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Figure SI1 (a) Absorbance, measured in transmission, not corrected for scattering and reflection, PL counts 
measured at an excitation wavelength of 450 nm. (b) The same data as a function of energy. (c) 
Normalized IPCE, comparison between predicted (cyan) and measured (red) PL emission spectrum. 
Absorbance and PL were measured at a film on glass, the IPCE of a meso TiO2 device.
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Figure SI2 JV curves of devices measured under solar simulator using a sweep rate of -10 mV/s and an 
aperture with an area of 0.16 cm2 (electrode area 0.25 cm2). (a) planar SnO2 based device; (b) mesoporous 
TiO2 based device; (c) device without HTL.

Table SI1 JV parameters of the devices shown in Fig. SI2.

Jsc / mA/cm2 Voc / V FF PCE Intensity / sun
Planar SnO2 21.7 1.16 0.75 19.7% 0.96
Mesoporous TiO2 21.6 1.14 0.78 19.6% 0.98
Without HTL 10.4 0.86 0.34 3.0% 1
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Figure SI3 Example of  monitoring during an intensity sweep (planar device at 20oC), where the 𝑉𝑜𝑐
intensity is swept up to 1.5 suns and back, taking three points per decade at 1, 2, and 5 (dwell time 3 s, 
10 s at the maximum intensity). The symbols indicate the automatically detected voltage used for the light 
intensity dependent  analysis in the paper. This approach is a trade-off and is not perfect as can be 𝑉𝑜𝑐
seen e.g. at the start of the sweep. Analyzing upward and downward scan increases the credibility of the 
data and allows to exclude a strong dependence on preconditioning. This approach is selected because 
waiting for  to stabilize is not feasible due to light-soaking effects, which are separately studied in this 𝑉𝑜𝑐
work. 
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Figure SI4 JV loop of “aged meso-TiO2“ device measured at 65oC with 100 mV/s starting at 1.2 V. Aging 
was performed under 1 sun equivalent LED illumination at 65oC under N2 for 8 days.
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Figure SI5 JV curves of investigated devices measured with 10 mV/s starting at 0 V at 20oC under 1 sun 
equivalent LED illumination.
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(a) planar SnO2
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(b) mesoporous TiO2

0 0.2 0.4 0.6 0.8 1 1.2

10
-6

10
-4

10
-2

10
0

voltage / V

cu
rrn

et
 d

en
si

ty
 / 

m
A

/c
m2

 

 

0 0.2 0.4 0.6 0.8 1 1.2
2

2.5

3

3.5

4

voltage / V

di
ffe

re
nt

ia
l i

de
al

ity
 fa

ct
or

 

 

fw JV
RSh

corrected for RSh and RS 

(c) aged
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Figure SI6 Correction for parasitic resistances according to an equivalent circuit model: 

. The corrected JV curves (dashed) were obtained in several steps: First, 
𝐼= 𝐼0exp (𝑒(𝑉 ‒ 𝐼𝑅𝑆)𝑛𝐼𝐷𝑘𝐵𝑇

‒ 1) + 𝑉 ‒ 𝐼𝑅𝑆𝑅𝑆ℎ

a linear fit of the experimental JV curve for small voltages (dash-dotted yellow line) to quantify the current 
flowing through the shunt resistance . This curve is subtracted from the experimental curve. Second, 𝑅𝑆ℎ
the voltage was corrected by removing the linear contribution to the JV curve for high voltages (

. The differential ideality factor is plotted in the bottom panels showing that the correction 𝑉𝑑𝑖𝑜𝑑𝑒= 𝑉 ‒ 𝐼𝑅𝑆)

(dashed) only slightly improves the reliability of the obtained value for .𝑛𝐼𝐷
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Figure SI7  monitoring during a stepwise sweep for a rather unstable meso-TiO2 device (blue at 20oC, 𝑉𝑜𝑐

red at 50oC). In particular for high light intensities and temperatures,  is already instable (albeit 𝑉𝑜𝑐
reversible) during the measurement procedure. These transients are to be considered when analyzing 
temperature dependent data at high light intensity and elevated temperatures in Fig. 7 of the main 
manuscript.
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Figure SI8 PL spectra of perovskite films on glass upon light soaking for 2 hours, which was done in the 
same setup as the device characterization, i.e. in N2 atmosphere under 1 sun equivalent LED illumination. 
The perovskite films were covered by a PMMA film to reduce the effect of atmosphere during storage and 
PL measurements. Data of two light-soaked samples are shown and one reference kept in the dark.
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Figure SI9 PL spectra of two perovskite films on glass and covered with PMMA, one kept in the dark 
(dashed) and one under light (solid lines) for 2 hours, both in N2 atmosphere. The PL slightly increases 
after storage in N2 independent of illumination for this sample. Repeating the PL measurements 30 
minutes later (films kept in the dark at ambient) changes the PL again slightly. A second round does as 
well. We conclude that the change of PL in these films is not clearly correlated to illumination. 
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Figure SI10 PL spectra of two perovskite films on FTO/TiO2 and covered with PMMA, one kept in the dark 
(dashed) and one under light (solid), cf. Fig. SI9. The absolute signal is by a factor of 10 quenched 
compared to the film on glass due to charge transfer and recombination at the TiO2 interface. The trend 
of slightly increased PL upon storage in N2 independent of illumination is maintained. 
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Figure SI11 PL spectra of a perovskite solar cell. The PL is measured through the glass substrate and the 
signal is much weaker compared to the films. The trend is inverted and fits the behavior of the open-
circuit voltage, which decreased after light soaking and increases again after a rest in the dark. 
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Figure SI12 PL of perovskite films on glass and covered with PMMA. Aging was performed for 8 days, 
either in an N2 glovebox at ambient temperature (30 oC), under dry air (2…5 % RH), or on a hot plate in an 
N2 glovebox. The PL was collected in an unmodified geometry of the spectroscopy setup in all cases and 
on films with the same thickness (excitation at 450 nm) allowing for a comparison of absolute spectra. In 
contrast to the aging behavior of devices, elevated temperatures do not lead to an increase in non-
radiative recombination. The emission yield is even slightly increased indicating an annealing effect 
(whereas storage in the dark under non-inert atmosphere leads to a reduced emission yield).
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Figures SI13 Mott Schottky analysis. The extracted doping densities are 1.2 x 1016 cm-3 for the meso-TiO2 
device, 1.7 x 1016 cm-3 for the degraded one, and 3 x 1016 cm-3 for the device without HTL. The data was 
extracted at a frequency of 20 kHz.


