MoS₂/TiO₂ Heterostructures as Nonmetal Plasmonic Photocatalysts for Highly Efficient Hydrogen Evolution

Limin Guo[†], Zhenzhong Yang [§], Kyle Marcus[‡], Zhao Li[‡], Bingcheng Luo[&], Le Zhou[‡], Xiaohui Wang[&], Yingge Du ^{§,*}, Yang Yang^{†,‡,*}

[†]NanoScience Technology Center, [‡]Department of Materials Science and Engineering, University of Central Florida, 4000 Central Florida Blvd. Orlando, Florida, 32816, United States

[&]State Key Laboratory of New Ceramics and Fine Processing, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, China

[§]Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory Richland, WA 99352 (USA)

*Corresponding Email: <u>Yang.Yang@ucf.edu</u>(Y.Y); <u>Yingge.Du@pnnl.gov</u>(Y.D)

Sections	Page	
I. Morphological and structure characterization	S 3	
SEM image of MoS ₂ @TiO ₂ heterostructure	S3	
HRTEM image of MoS ₂ @TiO ₂ heterostructure	S4-S5	
Raman and XRD patterns	S 6	
XPS spectra	S7	
II. Photo-response and photo-catalysis performance	S8	
Optical and SERS properties	S8	
LSPR charges separation and reaction process	S9	
Photo excitation and quenching behavior	S9	
Band structure and DOS of MoS ₂ layer	S10	
FEM simulation by monochromatic light irradiation	S11	
Photocatalytic performance comparison with literatures	S12	
III. Reference	S13	

Fig. S1 (a) SEM image of as-anodized TiO_2 nanocavity arrays; (b) after e-Beam deposition of 30 nm Mo; (c) cross-sectional view of $\text{MoS}_{2(30)}$ @TiO₂; (d) 10 nm Mo sulfurized for 360 min on TiO₂ nanocavity; (e) 10 nm Mo sulfurized for 10 min on Ti foil; (f) Mo foil sulfurized for 10 min (Scale bars: 200 nm); (g) photograph and morphologies of $\text{MoS}_{2(10)}$ @TiO₂ at different sample locations.

Fig. S2. (a) High angle annular dark field scanning transmission electron microscopy (HAADF-STEM) image and (c) corresponding bright field (BF) image of MoS_2 . (b) Filtered and faked HAADF image corresponding to (a). Scale bar is 1 nm. S-vacancies are presented as dark dots along S-Mo-S bond edge (red square). (d, e) Typical TEM image of MoS_2 nanoflakes inside TiO₂.

Fig. S3. (a,b) TEM images perpendicular growth of MoS_2 nanoflakes on the TiO_2 surface.

Fig. S4. XRD patterns (a) and Raman spectra (b) for series $MoS_2@TiO_2$ samples. Microscope Raman polarization laser wavelength 532 nm. Peak intensities ratio of E_{2g} and A_{1g} is 0.86, 0.764, 0.759 respectively, as a function of Mo thickness from 10-30 nm.

Fig. S5. Survey scan of $MoS_2@TiO_2$ heterostructure. The XPS spectra reveal the peaks of Ti, O, Mo, and S elements in the hybrid. Binding energies for Ti $2p_{3/2}$ (~458.7 eV), Ti $2p_{1/2}$ (~465.2 eV) and O 1s (~530.5 eV) are in agreement with the values of our previous report for pure TiO₂².

Fig. S6. (a) Excitation angle-resolved plasmonic properties of $MoS_2@TiO_2$ (Schematic design of the experimental setup is inserted. The substrate can be rotated clockwise around the *z*-axis by an angle Φ). (b) The UV-vis absorption spectra of $MoS_{2(30)}TiO_2$ sulfurized at 400 °C for 10, 30, 50 min. This figure shows that the photocatalyst displays weakening absorption in the visible-light region with increasing sulfurization time, which is caused by the complementary of S in MoS_2 crystal and reducing S defects.^{3, 4} (c) SERS spectra of 4-MBA recorded from different $MoS_2@TiO_2$ systems

Fig. S7. Schematic diagram of LSPR produced charge separation and reactive equation during H_2 evolution on MoS₂@TiO₂.

Fig. S8. (a) H_2 evolution rate over $MoS_2@TiO_2$ films to MoS_2 mass loading (Photocatalytic activity to seawater is inserted following. All testing carried out under simulated solar light). (b, c) Recycling photocatalytic H_2 evolution test of $MoS_{2(30)}@TiO_{2(compact)}$ and $MoS_2@Mo_{(compact)}$ over 15 h. (d, e) Photoluminescence (PL) spectra of $MoS_2@TiO_2$ cocatalysts at steady state and time-resolved transient PL decay, with charge-carriers lifetime inserted accordingly.

Fig. S9. (a-c) Density of States (DOS) for pristine MoS_2 monolayer and S-depleted MoS_2 , DOS projected on Mo 4d orbital and S 3p orbital. (d) FT-IR spectra of $MoS_2@TiO_2$ heterostructure.

Fig. S10. FEM-simulated electric field distribution of $MoS_2@TiO_2$ heterostructure under (a) 300 nm, (b) 500 nm, (c) 600 nm, (d) 700 nm excitation. Profiles of electrical field intensity along *x-z* plane and *y-z* plane across center of TiO₂ nanotube. The polarization direction is set along the *x*-axis

Method	Materials	H ₂ evolution rate (µmol h ⁻¹)	Mass activity (µmol h ⁻¹ g ⁻¹)	Ref.
Solvothermal	MoS ₂ /C ₃ N ₄ nanograss	55.6	11.1	5
CVD	MoS_2/TiO_2 nanosheets	42	4200	6
Hydrothermal	MoS ₂ /TiO ₂ nanorods	2.7	1500	7
CVD	MoS_2/TiO_2 nanotubes	0.44	-	8
CVD	MoS ₂ /TiO ₂	89	580000	This
	nanocavities			work

Table S1. Photocatalytic performance comparison of MoS_2 based catalyst for H_2 evolution in other reports

Reference:

- Luo, B., Wang, X., Tian, E., Li, G. & Li, L. Electronic structure, optical and dielectric properties of BaTiO₃/CaTiO₃/SrTiO₃ ferroelectric superlattices from first-principles calculations. *J. Mater. Chem. C* 3, 8625-8633, (2015).
- 2. Guo, L. Kun, L. *et al.* Enhanced Photoelectrocatalytic Reduction of Oxygen using Au@ TiO₂ Plasmonic Film. *ACS Appl. Mate. Inter.* 8, 34970-34977 (2016).
- Jin, B. *et al.* Aligned MoOx/MoS₂ Core-Shell Nanotubular Structures with a High Density of Reactive Sites Based on Self-Ordered Anodic Molybdenum Oxide Nanotubes. *Angew. Chem. Int. Ed.* 55, 12252-12256 (2016).
- Cheng, H., Qian, X., Kuwahara Y., Mori, K. & Yamashita, H. A Plasmonic Molybdenum Oxide Hybrid with Reversible Tunability for Visible-Light-Enhanced Catalytic Reactions. *Adv. Mater.* 27, 4616-4621 (2015).
- 5. Zhang, Z. *et al.* A Nonmetal Plasmonic Z-Scheme Photocatalyst with UV to NIR-Driven Photocatalytic Protons Reduction. *Adv. Mater.* 1606688 (2017).
- 6. He, H. *et al.* MoS₂/TiO₂ Edge-On Heterostructure for Efficient Photocatalytic Hydrogen Evolution. *Adv. Energy Mater.* 6, 1600464 (2016).
- 7. Zhou, W. *et al.* Synthesis of few-layer MoS₂ nanosheet-coated TiO₂ nanobelt heterostructures for enhanced photocatalytic activities. *Small* 9, 140-147 (2013).
- Zhou X., Licklederer M., Schmuki P. Thin MoS₂ on TiO₂ nanotube layers: An efficient co-catalyst/harvesting system for photocatalytic H₂ evolution. *Electrochem. Commun.* 73, 33-37 (2016).