Electronic Supplementary Information for

Highly Active, Stable Oxidized Platinum Clusters as

Electrocatalysts forthe Hydrogen Evolution Reaction

Xing Cheng,^aYongheLi,^bLirongZheng,^c Yong Yan,^dYuefeiZhang,^b GeChen,^{a*}ShaoruiSun,^{a*} Jiujun

Zhang ^{e*}

[a] Beijing Key Laboratory for Green Catalysis and Separation, College of Environmental & Energy Engineering, Beijing University of Technology, 100124 Beijing, P.R. China

E-mail: <u>chenge@bjut.edu.cn</u> and <u>sunsr@bjut.edu.cn</u>

[b] Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124, P. R. China

[c] Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P.R. China.

[d] Department of Applied Physics and Key Laboratory of Soft Chemistry and Functional Materials (Ministry of Education), Nanjing University of Science and Technology, Nanjing, Jiangsu210094, P. R. China

[e] College of Sciences & Institute for Sustainable Energy, Shanghai University, Shanghai 200444, P. R. China

E-mail: jiujun@shaw.ca

Figure S1a.TEM images of PtO_x/TiO_2 . Scale bar 200 nm; insert: SAED of PtO_x/TiO_2 .

Figure S1b. TEM images of PtO_x/TiO_2 . Scale bar 10 nm.

Figure S2a. N_2 absorption and desorption isotherms plots of PtO_x/TiO_2 .

Figure S2b. BJH pore size distribution for PtO_x/TiO₂.

Figure S3a.XPS survey spectrumfor PtO_x/TiO_2 catalyst.

Figure S3b. High-resolution XPS spectra of Pt 4f in the PtO_x/TiO_2 and the Pt/C catalysts.

Figure S3c. High-resolution XPS spectrum of Ti2p in the PtO_x/TiO₂ catalyst.

Figure S3d. High-resolution XPS spectrum of O 1s in the PtO_x/TiO₂ catalyst.

Figure S4.K³-weighted Fourier transform spectra from EXAFS and fitted spectra of fresh PtO_x/TiO_2 .

EXAFS fitting parameters at the Pt L_{III} -edge for the fresh PtO _x /TiO ₂							
Sample	Shell	N^a	$R(\text{\AA})^b$	$\sigma^2(\text{\AA}^2\cdot 10^3)^c$	$\Delta E_0(\mathrm{eV})^d$	R factor (%)	
PtO _x /TiO ₂	Pt-O(I)	4.3	1.99	2.2	10.9		
	Pt-O(II)	2.5	2.43	4.1	10.9	0.53	
	Pt-O-Ti	1.8	3.07	6.0	5.7		

Table S1. EXAFS fitting parameters at the Pt L_{III}-edge for the fresh PtO_x/TiO₂. *aN*: coordination number; *bR*: bond distance; ${}^{c}\sigma^{2}$: Debye-Waller factor; ${}^{d}\Delta E_{0}$: inner potential correction.

Figure S5. Electrochemical impedance spectroscopy (EIS) (Nyquist plots) of PtO_x/TiO_2 and TiO_2 in 0.5 M H₂SO₄ solution.

Figure S6. Polarizations curves of Pt/Cbefore and after CV between -0.15~0.4 V vs. RHE at 100mVs⁻¹ for 3,000 cycles.

Figure S7.TEM images of Pt/C catalyst (a) before and (b) after ADT.

Figure S8. The long term stability of the PtO_x/TiO_2 and Pt/C catalysts for the HER at -0.2V (vs.RHE) for 30 hours.

Figure S9. High-resolution XPS spectra of Pt 4f in the PtO_x/TiO₂ catalyst. (after 30 hours of electrolysis).

Figure S10.K³-weighted Fourier transform spectra from EXAFS and fitted spectra of PtO_x/TiO_2 (after 30hours of electrolysis).

EXAFS fitting parameters at the Pt L _{III} -edge forthe PtO _x /TiO ₂								
Sample	Shell	N^a	$R(\text{\AA})^b$	$\sigma^2(\text{\AA}^2\cdot 10^3)^c$	$\Delta E_0(\mathrm{eV})^d$	R factor (%)		
	Pt-O(I)	1.2	2.04	1.5	13.8			
PtO _x /TiO ₂	Pt-O(II)	1.6	2.61	2.0	15.0	0.64		
	Pt-O-Ti	0.6	3.28	5.2	15.3			

Table S2. EXAFS fitting parameters at the Pt L_{III}-edge for the PtO_x/TiO₂ after 30hours of stability measurements. ^{*a*}N: coordination number; ^{*b*}R: bond distance; ^{*c*} σ^2 : Debye-Waller factor; ^{*d*} ΔE_0 : inner potential correction.

Figure S11.Geometry structure ofH*absorbed on Pt⁴⁺ site after O²⁻ sites occupied byH*.

Bader charges of $TiO_2(anatase)$ -(101) surface and PtO_x cluster								
	Before loading	After loading						
	TiO ₂ (anatase)-(101) surface	PtO _x cluster	TiO ₂ (anatase)-(101) surface	PtO _x cluster				
Badercharge (a.u.)	767.89	113.91	767.88	113.99				

Table S3.Bader charges of $TiO_2(anatase)$ -(101) surface and PtO_x cluster before and after loading.