
Critical analysis on the quality of stability studies of perovskite
and dye solar cells

Supplementary Information

1 Checklist for the implementation and reporting of an aging
test

Topic Note
Aim of the aging test Intrinsic or extrinsic stability?
Finishing criteria of the test Certain test duration passed, level of degradation reached, or degra-

dation mechanism become visible?
Define test environment Outdoor/indoor, temperature, humidity, illumination level and type,

aging atmosphere?
The desired illumination type is reached by selecting a suitable lamp
type and possibly also a UV filter. All UV filters transmit some UV
irradiation and therefore, in case of solar cells that are very sensitive
to UV irradiation, the aging result might vary between pure visi-
ble (e.g. LED) and filtered UV-containing illumination. Thus, the
presence of a UV filter should be reported.
Report numerical values for environmental conditions, in particular
avoid ’ambient’ regarding humidity. Note that some environmental
parameters might have greatly differing values in the aging test cham-
ber and inside the cell: e.g., an illuminated black cell might be dozens
of degrees warmer than air next to it.

Define test conditions Open circuit, short circuit, under load, or in other electric condition?
Cycling of stress factors or constant conditions?

Define measurements Which measurements and how often are needed for reaching the aims
of the aging test? Manual or automatic measurements?
Check if any of the measurements is destructive or affects the condi-
tion of the cells. The measurements can also revive cells e.g. polar-
ization can reverse degradation of charge carriers.

Design of the test cells What kind of cells are needed for reaching the aims of the test?
Possible encapsulation, the suitable reference group, total amount of
cell groups?
The reference group is always useful because it helps in detecting
pitfalls in the experiment setup, such as insufficient encapsulation or
broken measurement devices.

1

Electronic Supplementary Material (ESI) for Energy & Environmental Science.
This journal is © The Royal Society of Chemistry 2018



Analyze the nuisance factors of
cell assembly and the aging test
setup

Which factors could act as a nuisance? Which actions before or
during the aging test could help in minimizing or removing them?
Should some of the nuisance factors be followed during the aging
test?
Local variations in light intensity, the order of assembling the cells,
and the order of measuring the cells are potential nuisance factors.

Define the ideal group size Are you planning to use a statistical test for the result analysis
or rely on comparing the means and standard deviations of the
groups? What is the expected difference in the variables between
the groups after the aging test? Are you targeting suggestive or
decisive results? Which statistical test would fill your needs (e.g.
t-test, ANOVA, ANCOVA)?
Calculate the ideal group size based on the previous decisions. See
Supplementary Information Section 4 for effect calculation for t-
test.

Define the actual group size Estimate how reliable your cell configuration and measurement
setup are: how many extra cells should be assembled in order to
have enough cells for final analysis after excluding outliers? On
the other hand, how many cells you can practically assemble and
age? The actual group size should be more than 1 cell in a group.

Assemble the cells Pursue using the same material batches for all the cells and as-
sembling all the cells within a short time period. Consider and
minimize possible nuisance factors during the cell assembly, such
as varying time spent for sealing the cells, air humidity, or pho-
todegradation.

Realize the aging test Follow the aging of the cells, especially the reference cells, in order
to detect early any problems in the setup.

Measure environmental condi-
tions during the test

Important environmental parameters, such as temperature and
humidity, should be monitored frequently and at different times
of day during the aging test.
In case of illuminated tests, the cell temperature might differ
from air temperature. Also relative humidity in the illuminated
area differs from the ambient indoor humidity since the increased
temperature decreases the relative humidity. The location of the
temperature and humidity measurement should thus be specified
when reporting the results.
For illuminated tests: Measure the illumination spectrum using
e.g. a spectroradiometer. Compare the intensity of UV and visi-
ble light to the AM1.5G illumination. Critical wavelength below
which undesired excitations occur in the material depends on the
material (see an example for TiO2 in literature [1]) but typically,
wavelengths shorter than 400nm are regarded UV. The intensity
of the illumination should be followed through the aging test in
case the lamps degrade. Additionally, the spatial distribution of
intensity, or the intensity at each individual solar cell, should be
monitored.
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The intensity could be monitored by a photodiode with sensitiv-
ity matching to the illumination spectrum. The current of the
photodiode should be calibrated under the intended illumination
spectrum and intensity. After the calibration, photodiode current
can be used for the further monitoring of the intensity.

Analyze the test results Is the behavior of the reference similar to the literature and your
own previous tests? If not, determine the reason for the difference
and whether it affects reaching the aims of the aging test.
Check if the data contains significant outliers (manually, or by sta-
tistical methods such as Peirce’s criterion). Determine the reasons
for the abnormal data (such as a damaged cell or wrong measure-
ment settings) and drop the cells/data from the final analysis if
necessary. In case that no clear reason for the deviation is not
found, drop the cells/data only with great care because the atypi-
cal results might not be outliers but represent the variation in the
results that is just larger than you expected.
The results could be handled with statistical tests or mean - stan-
dard deviation combination. If necessary, compensate nuisance
factors by statistical methods (e.g. regression analysis or AN-
COVA), otherwise e.g. t-test or ANOVA are good choices for
statistical testing.
Consider the practical consequences of the findings. Did the tested
cell groups perform in a practically similar way? Or are the dif-
ferences notable in practice?

Report the test results Present the data of all the cells and environmental parameters that
have been measured. Report also the possible outliers. The infor-
mation could be placed in the supplementary information section
if the data is lengthy.

2 Air humidity measurement

Indoor air humidity presented in Fig. 1 varies between 9% and 36% during one spring week in
Finland, the variations being correlated with the outdoor air humidity and the time of the day
(i.e., the level of air conditioning). The seasonal variations affect even more. For this location at
rather constant indoor temperature, the air humidity can exceed 60% during the summer months
for weeks and decrease below 20% in the winter time for long periods.

The indoor humidity data was measured in April 2017 with in-house-built automatic equipment
that utilized a relative humidity module HM1500LF. The measurements were made in a modern
office-laboratory building that has an air conditioning system and, due to that, rather stable indoor
temperature. The outdoor air humidity data was retrieved from a weather station within 2km from
the office building. The data was provided by Finnish Meteorological Institute.
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Figure 1: Relative outdoor and indoor air humidity during one spring week in a modern office-
laboratory building with air conditioning.

3 Example about the evolution of electrochemical impedance
spectroscopy result during the aging of the cell

The electrochemical impedance spectroscopy (EIS) results in Fig. 2 are shown as an example of
how the measurement data from too degraded solar cells might be difficult to interpret. EIS is
measured to acquire detailed information about the resistance and capacitance of the components
of the cell [2]. Shortly, in the case that the time constants of the solar cell components (in this
example counter electrode, photoelectrode, and electrolyte) are different enough, the components
appear in the Nyquist plot as separated arcs, the width of the arc representing the resistance arising
from the corresponding cell component (e.g., EIS data “Fresh” in Fig. 2).

Data “Aged” in Fig. 2 is from a solar cell that has started to degrade. The interpretation of the
data is that the radii of the arcs on left and right side (in this case corresponding to the interface
between the electrolyte and counter electrode, and the diffusion resistance of the electrolyte, re-
spectively) have increased because of the loss of charge carriers from the electrolyte. The increased
total resistance of the cell suppresses also the performance of the cell. In the case of data “Too
aged” in Fig. 2, the same cell has become too degraded for reliable analysis: The arcs in Nyquist
plot and the peaks in the impedance spectrum have merged together, one arc dominates the entire
spectrum, and hysteresis has increased. It is clear that the overall cell resistance has increased lead-
ing to the decreased performance of the cell but at this stage the individual cell components cannot
be distinguished from each other. Therefore, one can not anymore determine which components of
the cell have degraded.

EIS results presented in Fig. 2 were performed under 1 Sun illumination at open circuit voltage
of a DSC with 0.4 cm2 active area, iodine-based electrolyte with methoxypropionitrile solvent, N719
dye, and a black tape mask (the dimensions of the aperture were 1 mm larger than the dimensions
of the active area of the cell). The measurements were performed as fresh, after 365 hours of aging,
and after 1200 hours of aging under illumination (visible and UV light intensity that corresponded to
100% and 20% of the intensity at the corresponding part of the spectrum in AM1.5G, respectively)
at open circuit (additionally, IV curve and EIS measurements roughly in every 5 hours). EIS was

4



(a)

0.1
Z0/Z0

max

0

0.2

0.4

0.6

jZ
00 j

/Z
0 m

ax

Fresh
Aged
Too aged

(b)

0

0.5

1

Z
0 /Z

0 m
ax

(c)

10-1 102 105

f (Hz)

0

0.2

0.4

jZ
00 j

/Z
0 m

ax

Figure 2: Electrochemical impedance spectroscopy performed under illumination at open circuit
voltage of a dye solar cell as fresh (Fresh) and after 365 hours (Aged) or 1200 hours (Too aged)
of aging under visible+UV light. Real (Z ′) and imaginary (Z ′′) parts of impedance are shown
normalized in order to fit curves with drastically different scales to the same figure. Both a)
Nyquist plot and b)-c) impedance spectra are shown.

measured with a Zahner Zennium potentiostat by sweeping frequency range 10−1−105 Hz back and
forth with 10 mV amplitude. The illumination during the measurements corresponded to 100% and
20% of the visible and UV light intensity of AM1.5G spectrum, respectively) and was calibrated
using an official calibration solar cell with a KG5 colorglass filter (PV Measurements, Inc.). Nyquist
plots are shown normalized in order to fit the curves with drastically different scales to the same
figure. The widths of fresh, 365 hours aged, and 1200 hours aged curves are 32Ω, 58Ω, and 551Ω,
respectively.

5



4 Calculation of the statistical power of a two-tailed indepen-
dent samples t-test

In this section the standard calculation of a two tailed independent samples t-test is presented, false
positive and negative errors are briefly discussed, calculation of the statistical power of two-tailed
independent samples t-test is shown, and the application of power calculation for determining the
sufficient group size in an solar cell aging test is presented. Finally, examples of sufficient group
sizes with different parameters are presented.

4.1 Performing a t-test
A two-tailed independent samples t-test is a statistical method that is commonly used for testing
if the two compared sample groups (e.g., two groups of solar cells that have both been aged) have
equal or differing mean value (e.g., efficiency). The means of two independent samples, X̄1 and X̄2

with variances s21 and s22, respectively, are compared with each other. The number of solar cells in
each sample is n1 and n2, respectively. The two samples are assumed to have been drawn from two
normal distributions with true means of µ1 and µ2 and equal true variance of σ2 = σ2

1 = σ2
2 . In

this case statistic t follows t distribution [3]:

t =
(X̄1 − X̄2)− (µ1 − µ2)

sp

√
1
n1

+ 1
n2

∼ T (df), (1)

where T (df) is t distribution with degrees of freedom

df = n1 + n2 − 2, (2)

and sp is pooled variance

sp =

√
(n1 − 1)s21 + (n2 − 1)s22

df
. (3)

We define the null and alternative hypotheses of t-test as:

H0 : µ1 = µ2 (4)

Ha : µ1 6= µ2. (5)

By assuming that H0 holds, statistic t simplifies to form:

t =
X̄1 − X̄2

sp

√
1
n1

+ 1
n2

. (6)

Now, statistic t should follow t distribution T (df) as long as H0 holds. The more t value deviates
from the central (i.e. more probable) values of T (df), the more likely Ha holds instead.

A t-test is performed in practice by setting confidence level α and discarding H0 if the probability
of t statistic calculated based on the observed values, tobs, belonging to distribution T (df) is smaller
than α. In case of two-tailed t-test, the acceptance criteria of H0 is

t∗l = tα/2,df < tobs < t∗u = t1−α/2,df (7)
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Figure 3: T distribution with rejection areas shown in grey bordered by lower and upper critical
values t∗l and t∗u.

where t∗l and t∗u are called upper and lower critical values, which is illustrated in Fig. 3. The
critical values are in practice either checked from a lookup table (refer to any statistics book) or
calculated with the inverse cumulative distribution function of t distribution F−1 (e.g. function
tinv in Matlab):

t∗l = F−1(α/2, df), (8)

t∗u = F−1(1− α/2, df). (9)

The critical values t∗l and t∗u can be transformed to the space of the test variable [3]:

X̄∗l = t∗l sp

√
1

n1
+

1

n2
< X̄1 − X̄2 < t∗usp

√
1

n1
+

1

n2
= X̄∗u. (10)

The resulting interval with limits X̄∗l and X̄∗u is called a confidence interval.

4.2 Type I and II errors
There is always a possibility that a statistical test results in false deduction, either false positive
result called type I error, or false negative result called type II error [4]. With hypotheses of Eqs. 4
and 5 type I error would be to deduce that the two distributions have differing means although they
would be similar in reality. Correspondingly, type II error would be to deduce that the distributions
are similar although they are different in reality.

Confidence level α required for performing a statistical test directly determines the probability
of type I error. Type II error is determined by calculating the statistical power of the statistical
test because power is the probability that type II error does not happen.

4.3 Calculating the power of a two-tailed independent samples t-test
The most common and fastest way to calculate the power of a statistical test is to use a statistical
analysis software. However, understanding the principle of power calculation is beneficial for un-
derstanding how power calculation can be applied for the design of an aging test. Therefore, here
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Figure 4: Principle of calculating power P . Distributions A and B are otherwise similar t distribu-
tions but shifted with each other. The upper rejection area of distribution A starts from t = t∗u,
and the same point in the space of distribution B is t = t∗2.

the power of statistical test is calculated manually using two-tailed independent samples t-test as
an example.

Let’s assume that the true difference in the means between the two sample distributions defined
in Section 4.1 is

∆µ = µ1 − µ2 6= 0. (11)

Next, the power of the t-test is calculated in order to find out how probable it is that the difference
∆µ is detected with t-test, resulting in the rejection of H0 and selection of Ha instead.

Fig. 4 illustrates the basis of the calculation. Distribution A is the t distribution assumed in the
t-test defined in Section 4.1, resulting from H0 : µ1 = µ2. Distribution B is the true distribution
(with ∆µ) that is shifted regards to distribution A. The power of the test (probability of correctly
detecting ∆µ) is thus the part of distribution B that remains in the rejection area of distribution
A [4], i.e. the green colored area in Fig. 4.

The border of the rejection area is t∗u (Eq. 7) in t space of distribution A, or X̄∗u (Eq. 10) in
the space of the test variable. In t space of distribution B the border is critical value t∗2. It should
be noticed that t∗2 could be either the lower or upper critical value of distribution B depending on
the distance between the distributions A and B: assuming that the mean of distribution B is larger
than the mean of distribution A, t∗2 is the upper critical value in the case that the distance between
the means of the two distributions is small, the lower critical value in the case that the distance is
large. In the investigated case of Fig. 4 t∗2 is the upper critical value that is derived next.

A new t-test is defined based on Eq. 1:

t =
(X̄1 − X̄2)−∆µ

sp

√
1
n1

+ 1
n2

∼ T (df), (12)

H0,2 : µ1 − µ2 = ∆µ (13)

Ha,2 : µ1 = µ2. (14)
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Now, we can define t∗2 using Eq. 12 and X̄∗u (Eq. 10):

t∗2 =
X̄∗u −∆µ

sp

√
1
n1

+ 1
n2

. (15)

The confidence value corresponding to t∗2 and df , α2, is in practice determined from a lookup table
or calculated from the cumulative distribution function of t distribution, F . The calculation could
be done using function tcdf in Matlab. In the investigated case of Fig. 4 where t∗2 represents the
upper critical value of distribution B:

1− α2 = F (t∗2, df). (16)

Consequently, the power of the test (i.e., the colored area in Fig. 4) is

P = α2 = 1− F (t∗2, df) (17)

If t∗2 would represent the lower critical value of distribution B, power of the test would be

P = 1− α2 = 1− F (t∗2, df), (18)

i.e., the equation is the same with respect to F in both cases.
The power of a statistical test, in this case two-tailed independent samples t-test, can be calculated

after the aging test has ended and the samples have been acquired. However, it is more useful to
calculate the power of the statistical test already before the aging test based on estimated values.
This way, a desired power of the statistical test is reached by adjusting the number of test cells in
the aging test (or improving the aging test setup so that the expected variance in the test results
decreases).

4.4 Determining the sufficient test cell group size for an aging test
There are several alternative premises for determining the sufficient group size from the viewpoint
of statistical analysis. Here, the sufficient number of cells is investigated from the viewpoint of
optimizing the power of the statistical test selected for the result analysis. The power of a statistical
test (i.e., the probability of not getting type II error) is a function of the number of the cells, the
expected difference in the means of the investigated parameter (e.g. efficiency of the cells after the
aging test) between the two cell groups, the expected variance, and the desired confidence level (i.e.
the probability of getting type I error) of the selected statistical test. Hence, when the sufficient
group size is determined via statistical power, it is actually optimized with regards of type I and II
errors.

There is no simple explicit equation for the sufficient group size of a two-tailed independent
samples t-test. Therefore, an implicit function is presented. It is derived from Eqs. 9, 10, 15, and
17 describing the t-test and its power, assuming group size n1 = n2 = n and variance s21 = s22 = s2:

(F−1(1− P, 2n− 2)− F−1(1− α
2 , 2n− 2))2

n
=

∆µ2

2s2
, (19)

where F−1 is the inverse probability density function of t distribution, P is power, α is confidence
level, and ∆µ is the difference between the means of the two investigated cell groups. Eq. 19 can be
applied for optimizing group sizes of an aging test numerically. There are also various easy-to-use
statistical analysis softwares for the calculation of sufficient sample size, e.g. G∗Power.
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4.5 Examples about optimal group sizes in aging tests
Here, a simple example case of determining sufficient group sizes for an aging test with two cell
groups and results analysed with two-tailed independent samples t-test.The estimates for the suf-
ficient amount of samples listed in Tables 1 were computed based on Eq. 19 using Matlab code
included as additional Electronic Supplementary Information file. The imaginary example groups
were designed so that they could represent efficiencies of PSCs or DSCs after an aging test.

Estimated n
η1 (%) η2 (%) s (%) P = 0.9 P = 0.95

7 6 1 23 28
7 5 1 7 8
7 1 1 3 3
7 6 2.5 133 164
7 5 2.5 34 42
7 1 2.5 5 6
14 13 1 23 28
14 11 1 4 5
14 7 1 2 3
14 13 4 338 417
14 11 4 39 48
14 7 4 8 10

Table 1: Estimated sufficient group sizes for aging tests with expected post-aging efficiencies η1 and
η2 for cell groups 1 and 2, respectively, standard deviation s for both cell groups, and statistical
power P for a two-tailed independent samples t-test with confidence level 0.95. The estimations
are based on the power analysis.

Table 1 demonstrates that minimizing the variations in the results arising from either cell assembly
or the aging test is essential in increasing the reliability of the results. With 1% difference in
the post-aging efficiencies, suppressing the standard deviations from 2.5% to 1% means that the
estimated sufficient group size drops from practically impossible (>100 cells/group) to practicable
(<20 cells/group), for example. It is also clear that pursuing subtle differences in the efficiency
requires large cell groups whereas being able to make a statistically reliable distinction between
very instable and stable cells does not require that many cells. It should be noted, however, that
the computation of the sufficient group size is based on the assumption that the sample variance
is equal to the population variance. If there are only a few cells in a cell group, this assumption
might not be justified because there is not enough data about the true distribution of the post-aging
efficiency.

5 Literature review

5.1 Selecting the investigated articles
Literature was reviewed based on the Web of Science Core Collection. Initially, the proportion
of studies focusing on either stability or efficiency were estimated by searching the terms listed in
Table 2 from the whole database (performed 17.6.2017).
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Due to large amount of search results, the literature survey was performed on a limited group of
articles: the terms in Table 3 were searched from the titles of articles published 2016. The search
was repeated for year 2015 for DSCs to include more aging tests related to the topic. All the
found articles were analyzed unless they did not have the full version of the article available or were
unrelated to stability (e.g., were related to electron lifetimes instead of cell lifetimes). There were in
total 156 articles (see the list in Supplementary Information Section 6). The acquired article group
was analyzed and parameters describing the performed aging tests were listed (see the parameters
in Table 4).

(TO = ((dye AND solar AND cells) OR (perovskite AND solar AND cells))) AND
LANGUAGE: (English) AND DOCUMENT TYPES: (Article)
Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, ESCI Timespan=All years
(TO = (((dye AND solar AND cells) AND (efficien*)) OR ((perovskite AND solar AND
cells) AND (efficien*)))) AND
LANGUAGE: (English) AND DOCUMENT TYPES: (Article)
Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, ESCI Timespan=All years
((TO = (((dye AND solar AND cells) AND (stability OR aging OR degradation)) OR
((perovskite AND solar AND cells) AND (stability OR aging OR degradation))))) AND
LANGUAGE: (English) AND DOCUMENT TYPES: (Article)
Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, ESCI Timespan=All years

Table 2: Searches for Web of Science for estimating the prevalence of stability research.

dye AND solar
AND cells AND

stability

OR
perovskite AND
solar AND cells
AND

stability
lifetime lifetime
aging aging

degradation degradation

Table 3: Searches for Web of Science Core Collection for the literature survey.

Many articles contained multiple aging tests, for example, storage in dark conditions and under
visible illumination, that were performed on different sets of cells. In these cases, all the tests
were calculated as individual tests. Similarly, if the cells had passed one aging test with stable
efficiency and then were exposed to another test with very different conditions, both tests were
treated individually (there were four articles with this kind of tests).

As a result, 261 tests in total were investigated. 31 of the articles did not contain aging tests
of complete solar cells (either review or computational articles or contained only stability tests of
materials) or were published as conference proceedings. These articles were not in the scope of this
literature review. 60 of the aging tests were performed on DSCs and the rest were on PSCs.

5.2 Investigated variables

Multiple variables presented in Table 4 were determined from the investigated aging tests.
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5.3 Temperature and humidity

Humidity and temperature were reported in numeric values, in humidity or temperature intervals,
as being “ambient”, “normal air”, or “room” conditions, or not reported at all. It was rather common
that the samples were stored in a glove box, and the humidity was reported but not the temperature.

5.4 Illumination level

The reported light intensity values for visible and UV illumination were divided in four categories
listed in Table 4: first to numeric values (% of 1 Sun), second to quantitative intervals (% of 1
Sun), third to cases where illumination type is described but the intensity is not (>0), and fourth
to cases where the illumination type or intensity is not reported.

First all the tests reporting no illumination and not showing any experimental details suggesting
otherwise (such as very frequent maximum power point tracking data) were classified as dark tests.
The outdoor tests were investigated as a separate group.

The reporting of light intensity varies greatly. All the studies reporting a numeric intensity for
UV or visible illumination (as percentage of 1 Sun, as power density, etc.) were classified to the first
group of quantitatively reported illumination. Stating the lamp type and power is not enough for
reporting the intensity: even if the total power of the bulbs limits the intensity of the illumination
from above, intensity dissipates to the second power of the distance between the lamp, and thus
intensity actually reaching the cells remains unknown. All numeric values were transformed to
percentage of 1 Sun for further analysis in the literature review, although the transform is not very
accurate in all cases: when the spectrum of the illumination is unknown or when the illumination
is stated as luxes. Deviations from the actual values were regarded to be small enough to serve the
purpose of the literature review.

Several cases were found that the illumination was described to be 1 Sun or AM1.5G, but other
experimental details (e.g., solar simulator model or the type of the lamp) suggested that the spec-
trum of the illumination was matched only for the visible part of the spectrum. Therefore in all
the cases where the UV intensity was not specifically presented by the authors or the manufacturer
of the solar simulator, UV intensity was classified to “>0”. This class includes commercial solar
simulators designed according to standards that do not include the UV part of the spectrum, re-
porting only the lamp type applied for the aging (and possibly visible intensity), as well as studies
specifically reporting that the study contained or did not contain UV or visible illumination. Some
solar simulator manufacturers provide example figures of the spectra of the simulator irradiation on
the Internet. If these figures seemed to even roughly match the UV part of the AM1.5G irradiation,
the aging tests with the specific simulator were classified to quantitatively present UV intensity
(e.g. 1 Sun UV intensity if 1 Sun visible intensity was stated in the article).

Xenon, halogen, metal halide, and high pressure mercury lamps were assumed to emit UV irra-
diation in addition to visible irradiation, whereas LED, sulfur plasma, and high pressure sodium
lamps were not. There are LEDs specifically designed for emitting UV light on the market, but
here it was assumed that authors would have reported using this kind of LEDs. High pressure
sodium lamps do emit minor amounts of UV, but typically the lamp cover is designed to filter UV
efficiently.

In case of visible light, the fourth unknown category consisted of tests in which no illumination (or
lack of illumination, using words like “stored”) was mentioned in the test details but experimental
information suggested that the aging test was not a dark test. These cases were infrequent. In
the case of UV light, the fourth category consists of tests only mentioning that the aging test was
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performed under illumination, not specifying if it consisted of visible or UV light nor the simulator
or lamp type utilized.

5.5 Electric state of the cells
The electric state of the cells was reported in varying ways. For most tests, the electric state was
not mentioned at all. Typically, these tests were dark tests and therefore it was directly assumed
that the cells had been aged at open circuit. The illuminated tests were classified to “Unknown”
in the case where the electric state was not mentioned. Most of these tests are likely open circuit,
judging from other experimental details presented in the articles. Some tests used repeated IV
measurements as the aging condition. The test was classified to this group if IV is measured for
the majority of the aging time. This is hard to define in practice because the duration of the IV
measurement is often not stated. The limit was kept on average more than three measurements an
hour during the tests. This would result in the cell being measured for half of the test duration, if
a single IV test is assumed to take 10 minutes. We regarded this a reasonable assumption because
all of the reviewed tests utilizing very frequent IV measurements were performed on PSCs that
typically require slow IV measurements.

5.6 Group sizes
The number of cells in each cell group in the aging test was deduced to be one if the aging data
was shown for one cell and the article text referred to the sample in singular form. Referring to
the samples in plural form, although the data was shown only for one cell, was rather common.
Additionally sometimes mean data with standard deviations was presented but the group size was
not denoted. Both cases were classified to ">1". Sometimes the group size could not be reliably
determined from the article (e.g., because of contrary choices of words) and thus the group size was
classified to unknown. Additionally intervals of group sizes (e.g., 3-6 cells) were classified separately.

5.7 Aging test durations and post-aging efficiencies
The different groups in the aging tests sometimes went through different lengths of aging or different
tests during the aging. The length and final efficiency of the aging test was determined based on
the group that underwent the longest test, unless the shorter tests were only marginally shorter
and had clearly most stable cells. If the electrodes of the cells were changed after the aging stress,
the cells were classified as a separate cell group but were not taken into account when the best
final efficiency in the test was determined. In the case of cycling of environmental factors, the test
duration was assumed to be the duration of the whole test if the cycling included only clear stress
factors (such as cycling of illumination and high temperature). If the cycling was between stress
and rest (e.g., illumination and darkness at room temperature), the test duration was assumed to
be the duration of the stressing circumstances (e.g., total illumination time). Outdoor tests were
considered as continuous stress.
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Parameter Unit
DSC 0 or 1
PSC 0 or 1
Indoor 0 or 1
Outdoor 0 or 1
Cell 0 or 1
Panel 0 or 1
Location of study (if outdoor)
UV-protection 0 or 1
Filtering limit if UV protection nm or unknown
Weather protection 0 or 1
Length of aging hours or unknown
Real time 0 or 1
Accelerated time 0 or 1
Stable or not? ηend/ηinitial or unknown
Operation regime Voc or Isc or load or reverse or repeated IV or unknown
Visible light % of 1 Sun or quantitative interval or >0 or unknown
UV light % of 1 Sun or quantitative interval or >0 or unknown
Aging temperature ◦C or unknown
Aging temperature defined only as "ambient" or
"room temperature"

0 or 1

Relative aging humidity % or unknown
Aging humidity defined only as "ambient", "room
humidity", or "oven humidity"

0 or 1

Water immersion 0 or 1
Cycling of stress factors 0 or 1
Amount of cells per cell group
Data collected - IV 0 or 1
Data collected - IPCE 0 or 1
Data collected - EIS 0 or 1
Data collected - XRD 0 or 1
Data collected - other 0 or 1
Some cell measurements during the aging test,
not only before and after

0 or 1

Some environment measurements during the ag-
ing test, not only once

0 or 1

Encapsulated device 0 or 1
Open device 0 or 1
ISOS was used 0 or 1
Air humidity defined only as ambient or room
humidity. Or in air or in oven etc.

0 or 1

UV specifically measured by authors or manufac-
turer

0 or 1

Comments

Table 4: Data collected from the investigated aging tests during he literature review.
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