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Fig. S1 Additional aberration-corrected HAADF-STEM image of Ni-NG nanosheet, together with
EDX elemental mapping and zoom-in edge region.
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Fig. S2. XPS survey characterization of Ni-NG. Only C, O, N and Ni elements are detected and

insert is their atomic content.
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Fig. S3 TEM image of Ni NPs supported on graphene nanosheets.
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Fig. S4 CO,RR performance comparison between graphene supported Ni nanoparticles and Ni-
NG catalysts. (A) Overall steady state current densities, (B) H, Faradaic efficiencies and (C) CO
Faradaic efficiencies recorded in CO, saturated 0.5 M KHCOj solution. H; is the predominant gas

product observed on Ni nanoparticles.
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Fig. S5 Tafel slope analysis of CO evolution over Ni-NG catalyst casted onto either glassy
carbon electrode or carbon fiber paper substrate.
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Fig. S6 Electrochemical double layer capacitance (EDLC) measurements for bare glassy carbon
electrode and Ni-NG catalyst covered GCE.

The calculation of turnover frequency (TOF) per site was based on the estimation of the
numbers of Ni active sites in Ni-NG catalyst. The determined EDLC of bare GCE substrate was
24 uF/cm?, close to the reported graphene value of ~ 21 pF/cm? (J. Phys. Chem. Lett. 2013, 4,
1244-1253). We could estimate the electrochemical surface area of graphene layers in Ni-NG to
be ~ 122 cm? (or ~ 61 m?/g), given the 2.56 mF/cm? EDLC value of Ni-NG.

The moles of carbon atoms on the electrochemical surface can be calculated to be 122/10000
m? /2600 m? g'' / 12 g mol! = 3.9*1077 mol, where 2600 m? g"! is the theoretical specific surface
area of graphene (J. Phys. Chem. Lett. 2013, 4, 1244-1253). Taken together the Ni atomic content
in Ni-NG determined to be 0.44% by XPS (Fig. S2), the moles of Ni sites in the surface graphene
layers is determined to be ~ 1.7*10- mol. The CO partial current on Ni-NG under an overpotential
0f 0.57 V is 2.3 mA, which gives us a TOF of Ni active site to be 2.3/1000 C s'! / 103 C mol-' / 2/
1.7*#10° mol = 6.8 s! (or ca. 24350 h'!) in H-cell, at an overpotential of 0.57 V; or likewise, ca.
21.2 s at an overpotential of 0.75 V. Accordingly, the TOF of Ni site in MEA configuration is ca.
59 s°1, with an cell voltage of 2.78 V (Fig. 3D).
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Fig. S7 Characterizations of Ni-NG after 20-h’s continuous electrolysis under — 0.64 V CO,—to-
CO overpotential. (A) XPS survey, (B) STEM image and (C) corresponding EDX spectrum. The
determined Ni:C ratio is close to that of pristine one, and no Ni NPs were observed after the long-
term electrolysis. (D) EXAFS comparison of Ni-NG before and after the stability test, isolated Ni
atom feature was largely maintained.
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Fig. S8 Electrochemical CO,RR performance comparison on N-G, Ni-N and Ni-NG catalysts
casted glassy carbon electrode. N-G without any Ni-doping is predominant by HER during
catalysis, while Ni-G shows a similar potential dependence of CO evolution with Ni-NG apart
from the much lower FEs on the former.
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Fig. S9 Electrochemical CO,RR performance on Ni;N/CFP control sample, which delivers a
maxima CO FE of ~ 19% at -0.67 V with a CO partial current of ~ 1.62 mA/cm?.
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Fig. S10 XPS survey spectra for as-received graphene oxide (black line) and control sample of
NG (red line), inset table shows the determined atomic percentage of each component.
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Fig. S11 Aberration-corrected HAADF-STEM image of NG and corresponding EDX spectrum.
Neither bright dots of Ni atoms nor typical Ni peaks at 0.85 (Ni Lo/LP) and 7.47 (Ni Ka) were

observed.
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Fig. S12 Core level XPS spectra of (A) Ni 2p and (B) N 1s regions. The Ni 2p;/, binding energy
of Ni-G locates at 853.8 eV, which is more positive than that for Ni metal of 852.6 eV and
corresponding to a partial oxidized status. Moreover, this Ni 2p binding energy shifts to higher
values in Ni-NG sample at the presence of N, suggesting the possible Ni-N correlation and further
discussion can be seen in main text together with XAS results.
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Fig. S13 Ni K-edge XANES spectra of Ni-NG with compared to Ni-G, NiPc, NiO and Ni metal

references.
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Fig. S14 Schematic chemical structure of Ni phthalocyanine (Ni-PC), where four Ni-N bonds are
present and used as a reference for the chemical environment investigation of Ni-NG catalyst.
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Fig. S15 (A) STEM images of Ni-G and (B) EXAFS comparison of Ni-NG, Ni-G and Ni NPs/G.
In addition to Ni single atoms, there are some small Ni clusters observed, responsible for the

relatively low CO selectivity.
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Fig. S16 Additional CO,RR performance screening on Mn-NG, Fe-NG and Cu-NG catalysts. (A)
Total current densities and (B-D) Faradaic efficiencies for detected gas products at different
applied potentials on catalysts covered glassy carbon electrode (0.2 mg/cm? loading).
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Fig. S17 Electrocatalytic CO,RR performance comparison between Co-NG and Ni-NG. (A) Total
current densities and (B) H, partial current densities recorded at different applied potentials on
catalysts covered glassy carbon electrode (0.2 mg/cm? loading).
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Fig. S18 (A) STEM image and (B) EXAFS of Co-NG. The Co single atoms were uniformly
dispersed in graphene nanosheet, similar to the structure of Ni-NG. Different with Co metal which
shows the feature peak at 2.17 A of Co-Co bonding, the predominant peak within Co-NG locates
at ~ 1.50 A, ascribing to the Co-N/Co-C pair from isolated Co atoms [Nat. Commun., 2015, 6,

8668].
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Fig. S19 Free energy diagrams of CO, to CO conversion on (A) Ni and (B) Co different examined
active sites displayed in Figure 5A at equilibrium potential of —-0.12 V vs. RHE.
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Table S1 Comparisons of Ni-NG catalyst with reported non-noble metal CO,-to-CO
electrocatalysts in water.

j .
Catalyst CO FE (%) Overpotential Electrolyte Reference
(mA/cm?) V)
Ni-NG 95.0 11 0.62 0.5M KHCO; This work
Ni-NG (MEA) 97.0 51.5 N/A 0.1IM KHCO; This work
) Sci. Adv. 3,
Cu/Ni(OH), 92 4.3 0.39 0.5M NaHCO; | £1701069 (2017)
Nat. Energy
CuO/Sn0O, 90 1.2 0.58 0.1M NaHCO; 2, 17087 (2017)
COF-367-Co (1%) Science
(Co porphyrin) 53 1.35 0.55 0.5M KHCO; | 349 1208 (2015)
Science
COF-367-Co 91 13.2 0.55 0.5M KHCO; 349, 1208 (2015)
CoPc/CNT (2.5%) 92 10 0.51 0.IMKHCO; | [ 622";;”0”1”7')
Angew. Chem.
FeMn-N-C 84 1.8 0.40 0.1M KHCOs 54, 10758 (2015)
ZIF derived Fesd 91 7.5 0.48 0.1M NaHCO;, 7“ﬁ§§0(1‘;tgi'7)
. Small
Ni-N-Gr 90 2 0.58 0.1M KHCO; 12, 6083 (2016)
Chem
NiN-GS 93.2 4.2 0.70 0.1M KHCO; 3,950 (2017)
Ni-CPDpy973(1) 87 0.55 0.78 0.1M KHCO; ]X“tl' cho(’;’(’;il”;’;'
Ni-N,-C 85 9.5 0.66 0.IMKHCO; | % 420(’;‘(’;11”7’;'
Ni SAs/N-C 70.3 10.48 0.89 0.5M KHCO; Jl 3/19”% ()C7h86’(’§ 05;070)'
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