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electrocatalysts in water.



S3

Fig. S1 Additional aberration-corrected HAADF-STEM image of Ni-NG nanosheet, together with 
EDX elemental mapping and zoom-in edge region.
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Fig. S2. XPS survey characterization of Ni-NG. Only C, O, N and Ni elements are detected and 
insert is their atomic content.  
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Fig. S3 TEM image of Ni NPs supported on graphene nanosheets.
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Fig. S4 CO2RR performance comparison between graphene supported Ni nanoparticles and Ni-
NG catalysts. (A) Overall steady state current densities, (B) H2 Faradaic efficiencies and (C) CO 
Faradaic efficiencies recorded in CO2 saturated 0.5 M KHCO3 solution. H2 is the predominant gas 
product observed on Ni nanoparticles.
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Fig. S5 Tafel slope analysis of CO evolution over Ni-NG catalyst casted onto either glassy 
carbon electrode or carbon fiber paper substrate. 
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Fig. S6 Electrochemical double layer capacitance (EDLC) measurements for bare glassy carbon 
electrode and Ni-NG catalyst covered GCE. 

The calculation of turnover frequency (TOF) per site was based on the estimation of the 
numbers of Ni active sites in Ni-NG catalyst. The determined EDLC of bare GCE substrate was 
24 µF/cm2, close to the reported graphene value of ~ 21 µF/cm2 (J. Phys. Chem. Lett. 2013, 4, 
1244-1253). We could estimate the electrochemical surface area of graphene layers in Ni-NG to 
be ~ 122 cm2 (or ~ 61 m2/g), given the 2.56 mF/cm2 EDLC value of Ni-NG. 

The moles of carbon atoms on the electrochemical surface can be calculated to be 122/10000 
m2 / 2600 m2 g-1 / 12 g mol-1 = 3.9*10-7 mol, where 2600 m2 g-1 is the theoretical specific surface 
area of graphene (J. Phys. Chem. Lett. 2013, 4, 1244-1253). Taken together the Ni atomic content 
in Ni-NG determined to be 0.44% by XPS (Fig. S2), the moles of Ni sites in the surface graphene 
layers is determined to be ~ 1.7*10-9 mol. The CO partial current on Ni-NG under an overpotential 
of 0.57 V is 2.3 mA, which gives us a TOF of Ni active site to be 2.3/1000 C s-1 / 105 C mol-1 / 2 / 
1.7*10-9 mol = 6.8 s-1 (or ca. 24350 h-1) in H-cell, at an overpotential of 0.57 V; or likewise, ca. 
21.2 s-1 at an overpotential of 0.75 V. Accordingly, the TOF of Ni site in MEA configuration is ca. 
59 s-1, with an cell voltage of 2.78 V (Fig. 3D). 
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Fig. S7 Characterizations of Ni-NG after 20-h’s continuous electrolysis under – 0.64 V CO2–to-
CO overpotential. (A) XPS survey, (B) STEM image and (C) corresponding EDX spectrum. The 
determined Ni:C ratio is close to that of pristine one, and no Ni NPs were observed after the long-
term electrolysis. (D) EXAFS comparison of Ni-NG before and after the stability test, isolated Ni 
atom feature was largely maintained.
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Fig. S8 Electrochemical CO2RR performance comparison on N-G, Ni-N and Ni-NG catalysts 
casted glassy carbon electrode. N-G without any Ni-doping is predominant by HER during 
catalysis, while Ni-G shows a similar potential dependence of CO evolution with Ni-NG apart 
from the much lower FEs on the former.
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Fig. S9 Electrochemical CO2RR performance on Ni3N/CFP control sample, which delivers a 
maxima CO FE of ~ 19% at -0.67 V with a CO partial current of ~ 1.62 mA/cm2.
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Fig. S10 XPS survey spectra for as-received graphene oxide (black line) and control sample of 
NG (red line), inset table shows the determined atomic percentage of each component.   
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Fig. S11 Aberration-corrected HAADF-STEM image of NG and corresponding EDX spectrum. 
Neither bright dots of Ni atoms nor typical Ni peaks at 0.85 (Ni Lα/Lβ) and 7.47 (Ni Kα) were 
observed.
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Fig. S12 Core level XPS spectra of (A) Ni 2p and (B) N 1s regions. The Ni 2p3/2 binding energy 
of Ni-G locates at 853.8 eV, which is more positive than that for Ni metal of 852.6 eV and 
corresponding to a partial oxidized status. Moreover, this Ni 2p binding energy shifts to higher 
values in Ni-NG sample at the presence of N, suggesting the possible Ni-N correlation and further 
discussion can be seen in main text together with XAS results.
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Fig. S13 Ni K-edge XANES spectra of Ni-NG with compared to Ni-G, NiPc, NiO and Ni metal 
references. 
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Fig. S14 Schematic chemical structure of Ni phthalocyanine (Ni-PC), where four Ni-N bonds are 
present and used as a reference for the chemical environment investigation of Ni-NG catalyst.
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Fig. S15 (A) STEM images of Ni-G and (B) EXAFS comparison of Ni-NG, Ni-G and Ni NPs/G. 
In addition to Ni single atoms, there are some small Ni clusters observed, responsible for the 
relatively low CO selectivity.
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Fig. S16 Additional CO2RR performance screening on Mn-NG, Fe-NG and Cu-NG catalysts. (A) 
Total current densities and (B-D) Faradaic efficiencies for detected gas products at different 
applied potentials on catalysts covered glassy carbon electrode (0.2 mg/cm2 loading).
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Fig. S17 Electrocatalytic CO2RR performance comparison between Co-NG and Ni-NG. (A) Total 
current densities and (B) H2 partial current densities recorded at different applied potentials on 
catalysts covered glassy carbon electrode (0.2 mg/cm2 loading).
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Fig. S18 (A) STEM image and (B) EXAFS of Co-NG. The Co single atoms were uniformly 
dispersed in graphene nanosheet, similar to the structure of Ni-NG. Different with Co metal which 
shows the feature peak at 2.17 Å of Co-Co bonding, the predominant peak within Co-NG locates 
at ~ 1.50 Å, ascribing to the Co-N/Co-C pair from isolated Co atoms [Nat. Commun., 2015, 6, 
8668]. 
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Fig. S19 Free energy diagrams of CO2 to CO conversion on (A) Ni and (B) Co different examined 
active sites displayed in Figure 5A at equilibrium potential of –0.12 V vs. RHE.
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Table S1 Comparisons of Ni-NG catalyst with reported non-noble metal CO2-to-CO 
electrocatalysts in water.

Catalyst CO FE (%)
j

(mA/cm2)
Overpotential 

(V) Electrolyte Reference

Ni-NG 95.0 11 0.62 0.5M KHCO3 This work

Ni-NG (MEA) 97.0 51.5 N/A 0.1M KHCO3 This work

Cu/Ni(OH)2 92 4.3 0.39 0.5M NaHCO3
Sci. Adv. 3, 

e1701069 (2017)

CuO/SnO2 90 1.2 0.58 0.1M NaHCO3
Nat. Energy

2, 17087 (2017)

COF-367-Co (1%)
(Co porphyrin) 53 1.35 0.55 0.5M KHCO3

Science
349, 1208 (2015)

COF-367-Co 91 13.2 0.55 0.5M KHCO3
Science

349, 1208 (2015)

CoPc/CNT (2.5%) 92 10 0.51 0.1M KHCO3
Nat. Commun.       

8, 14675 (2017)

FeMn-N-C 84 1.8 0.40 0.1M KHCO3
Angew. Chem.               

54, 10758 (2015)

ZIF derived Fe0.5d 91 7.5 0.48 0.1M NaHCO3
ACS Catal.         

7, 1520 (2017)

Ni-N-Gr 90 2 0.58 0.1M KHCO3
Small                 

12, 6083 (2016)

NiN-GS 93.2 4.2 0.70 0.1M KHCO3
Chem

3, 950 (2017)

Ni2-CPDpy973(1) 87 0.55 0.78 0.1M KHCO3
Nat. Commun.    
8, 109 (2017)

Ni-Nx-C 85 9.5 0.66 0.1M KHCO3
Nat. Commun.    
8, 944 (2017)

Ni SAs/N-C 70.3 10.48 0.89 0.5M KHCO3
J. Am. Chem. Soc.    
139, 8078 (2017)


