Supplementary Information

Intermediate Temperature Fuel Cells via an Ion-Pair Coordinated Polymer Electrolyte

Kwan-Soo Lee, Sandip Maurya, Yu Seung Kim,* Cortney R. Kreller, Mahlon Wilson, Dennis Larsen, S. Elango Elangovan, and Rangachary Mukundan*

Figure S1. XRD pattern of SnP₂O₇ with P:M ratio of 3.5 measured via XRF synthesized with solution precipitation process. Whole pattern fitting structure refinement (JADE MDI, SnP₂O₇ PDF 00-029-1352) yielded a lattice parameter of 7.940 Å with a crystallite size of 49.6nm. Inset SEM image shows particle agglomerates of ~100 nm in diameter.

Figure S2. Proton conductivity of SnP_2O_7 pellet under humidified H_2/O_2 and dry H_2/O_2 feed; Data collected at 200 °C.

Figure S3. Membrane images (a) 80 wt.% SnP₂O₇/Radel composite membrane (b) 90 wt.% SnP₂O₇/Nafion composite membrane.

Figure S4. Tensile property comparison between commercial Nafion (Na⁺ form, NR 212) and 1,2 pentanediol cast Nafion (Na⁺ form) at 50 °C and 0 and 50% RH.

Figure S5. Stress-strain curves of SnP_2O_7 -Nafion composite membrane; the tensile properties were measured at 50 °C and 0% RH.

Figure S6. Area specific resistance and through-plane proton conductivity of phosphoric acid doped SnP_2O_7 -Nafion composite membrane (thickness, $t = 220 \,\mu\text{m}$) at 220 °C as a function of time.

Figure S7: SnP₂O₇ particles mixed with Pt black (6 mg_{Pt}/cm²) or Pt/C (0.2 mg_{Pt}/cm²). The cells were tested at 240 °C under 30 psig backpressure. (b) membrane: 90 wt.% SnP₂O₇/Nafion composite membrane (thickness: 100 μ m), electrode: vacuum deposited Pt (1 mg_{Pt}/cm²) or Pt/C (0.2 mg_{Pt}/cm²) on un-doped SnP₂O₇ particles. The cells were tested at 220 °C under 30 psig backpressure. (c) membrane: 90 wt.% SnP₂O₇/Nafion composite membrane (thickness: 180 μ m), electrode: SnP₂O₇ particles mixed with Nafion and Pt/C (0.2 mg_{Pt}/cm²). The cells were tested at 200 °C under 30 psig backpressure.

Figure S8. ¹**H NMR characterization.** Chloride form of quaternized polystyrene copolymer (QAS-Cl): δ 7.8-6.1 (br, 12H, -ArH), 5.0-4.2 (br, 4H, -ArCH₂N-), 5.0-4.2 (br, 4H, -ArCH₂N-), 3.9-3.6 (m, 2H, -NCH₂CH₂Ar), 3.05 (br, 6H, -ArCH₂N(CH₂CH₃)₃), 1.8-0.3 (br, 17H, -CH₂CHAr-, -N(CH₂CH₃)₃, ArCH₂CH₂N-). poly(vinylbenzyl chloride) (PS-bzCl): δ 7.4-6.2 (br, 3H, -ArH), 4.8-4.3 (br, 2H, -ArCH₂Cl), 2.2-1.1 (br, 3H, -CH₂CHAr-).¹

Figure S9. (a) Thermo-oxidative stability of the quaternized and ion-pair coordinated polystyrene in air (b) Thermal gravimetric analysis isotherm of the ion-pair coordinated polystyrene at $240 \,^{\circ}$ C.¹

Reference

 K.-S. Lee, J. S. Spendelow, Y. K. Choe, C. Fujimoto and Y. S. Kim, *Nature Energy*, 2016, *1*, 16120.