Electronic Supplementary Information for

Boosting the hydrogen evolution performance of ruthenium clusters

through synergistic coupling with cobalt phosphide

Junyuan Xu,^a Tianfu Liu,^b Junjie Li,^a Bo Li,^b Yuefeng Liu,^c Bingsen Zhang,^b Dehua Xiong,^a Isilda Amorim,^a Wei Li^a and Lifeng Liu^{a,*}

^a International Iberian Nanotechnology Laboratory (INL), Av. Mestre Jose Veiga, 4715-330 Braga, Portugal

^b Shenyang National Laboratory for Materials Science and Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China

^c Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China

* Corresponding author email. lifeng.liu@inl.int (L.F. Liu)

Supplementary figures:

Fig. S1 XPS survey spectra of CoP-40, CoP-20, Ru-40, Ru-20, Ru/CoP and RuCoP catalysts.

Fig. S2 TEM images of CNFs after pre-treatment in acid. Inset: HRTEM.

Fig. S3 Morphology and microstructure of CoP-40 catalysts. (a) Low-magnification TEM image. Inset: particle size distribution. (b) High-magnification TEM image. (c) HRTEM image (lattices indexed according to orthorhombic CoP, ICDD No. 00-029-0497). (d) FFT-ED pattern taken from a single CoP NP. (e) STEM-HAADF image. (f-h) Elemental maps of C, Co and P.

Fig. S4 Morphology and microstructure of CoP-20 catalysts. (a) TEM image. Inset: particle size distribution. (b) HRTEM image (lattices indexed according to orthorhombic CoP, ICDD No. 00-029-0497). (c) Zoomed view of a single CoP NP and the corresponding FFT-ED pattern. (d) STEM-HAADF image. (e-g) Elemental maps of C, Co and P.

Fig. S5 Morphology and microstructure of Ru-40 catalysts. (a) TEM image. (b) particle size distribution. (c) High-magnification TEM image. (d) HRTEM image (lattices indexed according to hexagonal Ru, ICDD No. 01-089-4903). (e) STEM-HAADF image. (f, g) Elemental maps of C and Ru.

Fig. S6 Morphology and microstructure of Ru-20 catalysts. (a) TEM image. Inset: particle size distribution. (b) HRTEM image (lattices indexed according to hexagonal Ru, ICDD No. 01-089-4903). (c) Zoomed view of a single Ru NP and the corresponding FFT-ED pattern. (d) STEM-HAADF image. (e, f) Elemental maps of C and Ru.

Fig. S7 Morphology and microstructure of Ru/CoP. (a) TEM image. (b) HRTEM image. Inset: particle size distribution of Ru. (c) Zoom viewed of some NPs. (d) STEM-HAADF image and elemental maps of Ru, Co and their overlay.

Fig. S8 *iR*-corrected linear scan voltammograms of the CNF supports measured in (a) $0.5 H_2SO_4$ and (b) 1.0 M KOH. For comparison, the curves of the hybrid RuCoP and Ru/CoP catalysts are also presented.

Fig. S9 *iR*-corrected polarization curves of commercial Pt/C catalysts (solid lines for 20 wt % Pt loading and short dotted lines for 40 wt % Pt loading) with different mass loadings of 0.15, 0.30 and 0.60 mg cm⁻² on GC substrates. Scan rate: 5 mV s⁻¹. Pt/C catalysts (20 wt % Pt) with a loading of 0.3 mg cm⁻² show best HER activities in both acidic and alkaline solutions.

Fig. S10 Comparison of the apparent and mass activities of RuCoP, Ru/CoP and other control catalysts measured in (a) 0.5 M H_2SO_4 and (b) 1.0 M KOH. To make the comparison fair, all catalysts have a nominal metal loading of 40 wt % on the carbon supports.

Fig. S11 Tafel plots of RuCoP, Ru/CoP and other control catalysts obtained in (a) $0.5 \text{ M H}_2\text{SO}_4$ and (b) 1.0 M KOH.

Fig. S12. Cyclic Voltammograms of CoP-40, CoP-20, Ru-40, Ru-20, Ru/CoP, RuCoP and Pt/C (20 wt % Pt) catalysts measured in PBS solution (pH = 7) at 50 mV s⁻¹.

Fig. S13 Comparison of the TOF values of RuCoP catalysts with those of other state-of-the-art HER catalysts tested in 0.5 M H_2SO_4 .

Fig. S14 Comparison of the TOF values of RuCoP catalysts with those of other state-of-the-art HER catalysts tested in 1.0 M KOH.

Fig. S15 N_2 adsorption/desorption isotherms of CNF supports, CoP-20, CoP-40, Ru-20, Ru-40, Ru/CoP, RuCoP and Pt/C (20 wt %) catalysts. The insets are corresponding pore size distribution plots.

Fig. S16 Ru 3d-C1s XPS spectra of Ru-40, Ru-20, Ru/CoP, and RuCoP catalysts.

Fig. S17 The model catalysts optimized for DFT calculations. (a) Pt (111) – most active crystalline planes of Pt for HER, (b) a slab of CoP (111) mimicking the pristine CoP, (c) a slab of Ru (001) mimicking the pristine Ru, (d) a slab of Ru (001) on a slab of CoP (111) mimicking the Ru/CoP catalyst, and (e) an ultrafine Ru cluster (13 atoms) on a slab of Co (111) mimicking the RuCoP hybrid catalyst. The grey, dark pink, orange, dark green spheres represent platinum, cobalt, phosphorus and Ru atoms, respectively.

Fig. S18 (a) The hydrogen ($E_{ads,H} = -0.50 \text{ eV}$), (b) H_2O ($E_{ads,H2O} = -0.34 \text{ eV}$), and (c) OH ($E_{ads,OH} = -2.43 \text{ eV}$) adsorption energies on the Pt (111) surface. The white and red spheres represent hydrogen and oxygen atoms, respectively.

Fig. S19 (a) The hydrogen ($E_{ads,H} = -0.13 \text{ eV}$), (b) H_2O ($E_{ads,H2O} = -0.59 \text{ eV}$), and (c) OH ($E_{ads,OH} = -4.55 \text{ eV}$) adsorption energies on the CoP (111) surface. The white and red spheres represent hydrogen and oxygen atoms, respectively.

Supplementary tables

Catalyst (nominal loading)	Co (actual loading, wt %) ^[a]	Ru (actual loading, wt %) ^[a]	Surface charge (µC) ^[b]	Physical surface area (m ² g ⁻¹) ^[c]
CoP (40 wt %)	33.8	/	2735	39
CoP (20 wt %)	18.2	/	3095	53
Ru (40 wt %)	1	34.5	3626	34
Ru (20 wt %)	/	19.0	3791	62
Ru/CoP	17.6	18.4	4937	70
RuCoP	18.8	17.7	5478	75
Pt/C (20 wt %)	/	/	8378 ^[d]	120 ^[d]

Table S1. Actual metal loading, surface charge and physical surface area of each catalyst.

^[a] The values were determined from the ICP-MS analyses.

^[b] The values were estimated in accordance with **Fig. S12**.

^[c] The values were obtained by N₂ absorption/desorption isotherms (Fig. S15).

^[d] The large surface area of Pt/C (20 wt%) can be partly attributed to the larger surface area of the C supports (230 – 240 m² g⁻¹, *J. Phys. Chem. B* **2003**, 107, 6292), compared to the CNF supports (105 m² g⁻¹, **Fig. S15a**).

Electrolyte	Catalyst	Substrate	Loading (mg cm ⁻²)	<i>j</i> (mA cm ⁻²)	η _i (mV)	Tafel slope (mV dec ⁻¹)	Reference
	RuCoP	Glassy carbon electrode	Ru ca. 0.06	10 20 50 100	11 25 47 77	31	This work
0.5 M H2SO4	Pt-MoS ₂ nanosheet	Glassy carbon electrode	Pt, ca. 0.075	10	ca. 53	40	Nat. Commun., 2013, 4 , 1444
	MoP S film	Ti foil	3	10	64	50	Angew. Chem. Int. Ed., 2014, 53 , 14433-14437
	Pt MLAg NF/Ni foam	Ni foam	/	10	ca. 70	53	Sci. Adv., 2015, 1 , e1400268
	NiAu/Au nanaoparticle	Glassy carbon electrode	ca. 0.20	10	50	36	J. Am. Chem. Soc., 2015, 137 , 5859- 5862
	Ni₅P₄ pellet	Ti foil	177	10	23	33	Sci., 2015, 8 , 1027- 1037
	WO ₂ -Carbon mesoporous nanowires	Glassy carbon electrode	0.35	10 20	58 78	46	J. Am. Chem. Soc., 2015, 137 , 6983- 6986
	GO nanocomposite	Glassy carbon electrode	0.14	10	34	33.6	Nat. Commun., 2016, 7 , 11204
	NiMo₄N₅ nanocrystals	Glassy carbon electrode	1.0	20	43	39	Nano Energy, 2016, 22 , 111-119
	ALD50Pt/NGNS	Rotating disk electrode	ca. 0.15	10	38	29	Nat. Commun., 2016, 7 , 13638 L Am. Chem. Soc
	Ru/C ₃ N ₄ /C nanoparticle	Rotating disk electrode	Ru, ca. 0.041	10	70	/	2016, 138 , 16174- 16181
	Pt ₂ Pd/NPG700 nanoparticle	Rotating disk electrode	ca. 0.16	10	58	31	Carbon, 2017, 114 , 740-748
	Ru@C₂N nanoparticle Bu-MO₂	Rotating disk electrode	Ru, ca. 0.082	10	13.5	30	Nat. Nanotechnol., 2017, 12 , 441-446
	nanoparticle	electrode	0.285	10	55	44	2017, 5 , 5475-5485 ACS Appl. Mater.
	nanoalloy	electrode	0.28	10	41	31	Interfaces, 2017, 9 , 17326-17336
	RuP ₂ @NPC nanoparticle	Glassy carbon electrode	1.0	10	38	38	Angew. Chem. Int. Ed., 2017, 56 , 11559-11564
	Ni _{0.33} Co _{0.67} Se ₂ /CF P	Carbon fiber paper	/	10	65	35	Adv. Energy Mater., 2017, 7 , 1602089
	NI _{0.89} CO _{0.11} Se ₂ MNSN/NF N S-Carbon	Ni foam Glassy carbon	2.62	10	52	39	Adv. Mater., 2017, 29 , 1606521 ACS Nano, 2017
	nanosheets	electrode	/	10 10	290 23	76.9	11 , 7293-7300
1.0 M KOH	RuCoP	Glassy carbon electrode	Ru, ca. 0.06	20 50 100	38 66 102	37	This work
	Pt nanowire/SL- Ni(OH)2	Glassy carbon electrode	Pt, 0.016	10	70	/	Nat. Commun., 2015, 6 , 6430
	NiSe/NF	Ni foam	2.8	10	96	120	Ed., 2015, 54 , 9351- 9355
	Ni₅P₄ pellet	Ti foil	177	10	49	98	Energy Environ. Sci., 2015, 8 , 1027- 1037
	P-doped Mo₂C@C nanospheres	Glassy carbon electrode	0.90	10	47	71	ACS Nano, 2016, 10 , 8851-8860

Table S2. Comparison of the η_j and Tafel slope of RuCoP with other state-of-the-art catalysts in 0.5 M H₂SO₄ and 1.0 M KOH.

Pt ₃ Ni ₃ nanowire	Rotating disk electrode	Pt, 0.015	10 ca. 40	40 70	/	Angew. Chem. Int. Ed., 2016, 128 , 13051-13055
Ni-MoS ₂ nanosheet	Carbon cloth	0.89	10	98	60	Energy Environ. Sci., 2016, 9 , 2789- 2793
Ni-C-N nanosheets	Glassy carbon electrode	0.2	10	30.8	40	J. Am. Chem. Soc., 2016, 138 , 14546- 14569
Ultrathin Ni nanosheets	Carbon cloth	0.53	10	80	70	Chem, 2017, 3 , 122-133
RuCo@NC nanoparticle	Glassy carbon electrode	0.275	10	28	31	Nat. Commun., 2017, 8 , 14969
Ni _{0.33} Co _{0.67} Se ₂ /CF P	Carbon fiber paper	/	10	106	60	Adv. Energy Mater., 2017, 7 , 1602089
Ni(OH) ₂ /MoS ₂ heterostructure	Carbon cloth	4.8	10	80	60	Nano Energy, 2017, 37 , 74-80
3D core-shell Cu@NiFe LDH/CF	Copper foam	/	10 100	116 192	58.9	Energy Environ. Sci., 2017, 10 , 1820-1827
N,S-Carbon nanosheets	Glassy carbon electrode	1	10	380	103	ACS Nano, 2017, 11 , 7293-7300
NiCo ₂ P _x /CF	Carbon fiber paper	5.9	10	58	34.3	Adv. Mater., 2017, 29 , 1605502
Ni _{0.89} Co _{0.11} Se ₂ MNSN/NF	Ni foam	2.62	10	85	52	Adv. Mater., 2017, 29 , 1606521
RuP ₂ @NPC nanoparticle	Glassy carbon electrode	1.0	10	52	69	Angew. Chem. Int. Ed., 2017, 56 , 11559-11564