Supporting Information: Exploring biotransformation of micropollutants in three freshwater phytoplankton species

Michael A. Stravs^{†‡}, Francesco Pomati^{†§}, Juliane Hollender^{†‡*}

[†]Eawag Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland

[‡]Institute of Biogeochemistry and Pollutant Dynamics, Universitätstrasse 16, ETH Zürich, 8092 Zürich, Switzerland

[§]Institute of Integrative Biology, ETH Zürich, Universitätstrasse 16, 8092 Zürich, Switzerland

* Corresponding Author

Überlandstrasse 133, 8600 Dübendorf, Switzerland

phone: +41 58 765 5493; fax: +41 58 765 5893; e-mail: juliane.hollender@eawag.ch

Summary: 36 pages, 9 tables, 6 figures

Table of Contents

Support phytopla	ting Information: Exploring biotransformation of micropollutants in three freshwater ankton species	1
S1. S	Supplementary Materials and Methods	4
S2. S	Supplementary Results	11
S2.1	Bioconcentration	11
S2.2	Transformation product identification	15
S2.3	Enzymatic transesterification of CBDZ with ethanol	19
S2.4	Abiotic transformation of KET	20
S2.5	Estimation of environmental transformation rates	21
S3. S	Spectra and Data for Transformation Products	22
S3.1	Structure Elucidation of MEF-Glu	22
S3.2	Structure Elucidation of CBDZ-M	23
S3.3	Comparison of CBDZ-M spectrum to predicted CFM-ID spectra	24
S3.4	Structure elucidation of SMZ-Pt	29
S3.5	Structure elucidation of SMZ-PtO	30
S3.6	Structure elucidation of SMZ-AcOH	31
S3.7	Structure elucidation of BEZ-da	32
S3.8	Structure elucidation of BEZ-M	33
S3.9	Structure elucidation of RAN-dm	34
S3.10	O Structure elucidation of MPL-dm	35
Referen	nces	36

List of Tables and Figures

Table S1: Used compounds, chemical formulas, molecular weights log Kow values, CAS numbers and sources.

Table S2: Quantified parents and transformation products with internal standards used for quantification

 Table S3: Suspect screening lists used for transformation product prediction.

Figure S1: Growth curves for single culture experiments (a) and mixture experiments (b,c).

Table S4: Mass balance of studied compounds in single-species experiments after 4 days.

Table S5: Individual apparent bioconcentration factors for each compound in the three species Mcy,

 Syn and Chl.

Figure S2 :Log bioconcentration factor in dependence of log K_{ow} for a) Mcy, b) Syn and c) Chl.

 Table S6:
 log Kow correlations to apparent bioconcentration factor.

Table S7: Analytical summary of found transformation products.

Figure S3: pH-controlled experiments for strobilurin fungicides.

Figure S4: Sulfamethoxazole and metabolites in mixture experiments.

Figure S5: Formation of BEZ-da (a), BEZ-M (b) and ATE/MPL-A (c) under chemical stress.

Figure S6: Transesterification of CBDZ with EtOH.

Table S8: Estimation of environmental transformation rates for ATE.

Table S9: Estimation of phytoplankton contribution to environmental transformation rates.

S1. Supplementary Materials and Methods

Culture medium. Woods Hole Combo (WC) medium (as modified by Guillard and Lorenzen ¹) was prepared as follows: A solution of 1 mM NaNO₃, 250 μ M CaCl₂, 150 μ M MgSO₄, 150 μ M NaHCO₃, 50 μ M K₂HPO₄, 390 μ M H₃BO₃, 11.7 μ M Na₂EDTA, 11.7 μ M FeCl₃, 10 nM CuSO₄, 76.5 nM ZnSO₄, 42 nM CoCl₂, 910 nM MnCl₂, 26 nM Na₂MoO₄, 98 nM Na₃VO₄, 0.5 mM TES (2-[[1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl]amino]ethanesulfonic acid) in deionized water was prepared from 115 mg TES and 1000x stock solutions of the remaining constituents. The medium was sterilized by autoclaving (30 min at 121°C). Modified versions were prepared by replacing TES by 100 mL 0.1M MOPS (3-(N-morpholino)propanesulfonic acid) buffer stock solution, pH 7.5, per L of medium (Woods Hole Combo + MOPS, WC+M medium), or by replacing TES by 100 mL 0.1M pH 7.5 per L of medium, and 1 mM NaNO₃ by 1 mM NH₄Cl (Woods Hole Combo + Ammonia + MOPS, WC+A+M medium).

Experiments – small scale, *Mcy/Syn* mixtures. *Mcy* and *Syn* cultures were sampled at comparable optical densities and mixed 1:1. In 20 mL online vials, 3 mL of *Mcy/Syn* mixture were diluted with 3 mL fresh WC medium. For control samples, 6 mL of fresh WC or WC+M medium was added to 20 mL online vials. A chemical mixture or solvent control (see below) was added to a final concentration of 10 μ g/L per compound and sample. To each sample, a stressor chemical or vector control was added (see below). The vials were capped with a non-fixed crimp cap and a tissue cover, and incubated as for single species experiments..

Immediately after addition of the chemical mixture (t0) and after timepoints up to a week (see below) samples were taken for chemical analysis and cell density measurement. For chemical analysis, 500 or 750 μ L of well mixed culture were sampled into a HPLC vial and frozen until measurement. For cell density measurement, 200 uL per culture were sampled into a 96-well plate and optical density at 680 nm and 750 nm was measured (SpectraMax 190, Molecular Devices, Sunnyvale CA).

Experiments – small scale: sample preparation. The frozen samples were thawed and lysed in the ultrasonic bath for 5 min at 37°C. 150 uL of well-mixed sample were added to a 300 uL HPLC insert in an 1.5 mL Eppendorf vial and subsequently centrifuged 5' at 9000 rpm. 100 uL SN were diluted into 20 mL nanopure H_2O and fortified with internal standard (IS) mixture (total final absolute amount 1 ng IS per substance and sample).

pH controlled degradation experiment. Two culture vials were prepared with WC+M medium (pH 7.5), one sample was prepared with WC medium (pH 7.2). As a control, two culture vials with WC+M medium and one with WC medium were prepared and autoclaved. To all samples, chemical mixture 1 was added to a final concentration of 10 μ g/L per compound. Samples were taken at 0, 2.5, 4, 24, 32, 50 and 74 hours.

Chemical stressor experiment – 3 stressors. 14 culture vials were prepared with WC medium. To 7 vials, chemical mixture 1 was added to a final concentration of 10 μ g/L per compound; to the other 7 vials, chemical mixture 2 was added instead. To 6 of the 7 vials for each mixture, a chemical stressor (atrazine, irgarol or triclosan) was added to a final concentration of 10 ng/L (3 vials, one each, from 1 μ g/L in EtOH) or 100 ng/L (3 vials, one each, from 10 μ g/L in EtOH). To the last vial, no stressor (only equivalent EtOH) was added. As a control, one vial each was prepared without culture, with WC medium, and either chemical mixture 1 or 2 (medium control); and two vials were prepared with culture and WC medium and no chemical mixture (biological control). Samples were taken after 0, 1, 3, 5 and 7 days.

Chemical stressor experiment – atrazine only. 8 culture vials were prepared with WC medium. To 4 vials each, chemical mixture 1 or 2 was added to a final concentration of 10 μ g/L per compound. To 2 vials each, atrazine (final concentration 100 ng/L, from 10 μ g/L in EtOH)

was added; to the 2 other vials, no atrazine (only EtOH) was added. As a control, 4 vials were prepared without culture, with WC medium, 100 ng/L atrazine, and either chemical mixture 1 or 2 (two each, medium control); and 4 vials were prepared with culture and WC medium, no chemical mixture, and 100 ng/L atrazine (2 vials) or equivalent EtOH (2 vials) was added. Samples were taken after 0, 1, 3 and 5 days.

CBDZ: solvent exchange experiment. 8 culture vials were prepared with WC medium (5 mL volume, otherwise as above). To 2 vials each, Mix 1 (in EtOH), CBDZ alone in EtOH, CBDZ in isopropanol were added to a final concentration of 10 µg/L per compound (spike volume 50 µL); to two vials, EtOH alone (50 µL) was added (biological control). As a control, 3 vials were prepared with WC medium. To two, Mix 1 was added to a final concentration of 10 µg/L per compound; to one, CBDZ in EtOH was added to a final concentration of 10 µg/L. Samples were taken after 0, 1, 2 and 3 days.

Chemical analysis: Online SPE cartridge. An empty stainless steel SPE cartridge (20 mm x 2.1 mm, BGB) was filled with 9 mg Oasis HLB (15 μ m particle diameter; Waters, USA) and a second layer of 9 mg of a 1:1:1.5 mixture of Strata X-AW (33 μ m particle diameter), Strata X-CW (25 μ m; both Phenomenex, Aschaffenburg, Germany), and Isolute ENV+ (70 μ m; Biotage, Uppsala, Sweden).

Chemical analysis: source parameters. Source parameters were as follows: spray voltage: 4 kV (positive mode) or 3 kV (negative mode), capillary temperature: 320 °C, sheath gas: 40, auxiliary gas: 10, spare gas: 0, probe heater temperature: 50 °C, S-Lens RF level: 50. Calibration of the mass spectrometer was performed in positive and negative mode using an in-house amino acid / oligopeptide calibration solution.

Chemical analysis: Quantification and screening, method parameters For initial quantification measurements, data was acquired in polarity switching mode with data-dependent acquisition. Parameters were as follows: MS resolution: 70000, MS AGC target: 1×10^6 , MS maximum injection time: 50 ms, mass range: m/z = 100-1500, loop count for MS2 acquisition: 3 (positive), 2 (negative), MS² resolution: 17500, MS² AGC target: 1×10^5 , MS² maximum injection time: 50 ms, MS² isolation window: 1 Da, underfill ratio: 1%, MS² intensity threshold: 2×10^4 , dynamic exclusion: 10 s, "pick others": enabled.

Chemical Analysis: Spectra acquisition for compound identification, method parameters. Using inclusion lists, putative transformation products were fragmented in positive and negative mode at collision energies of 15, 30, 45, 60, 75, 90, 120, 150, 180 in time windows of 0.8 min around the expected retention time. Parameters were as follows: Full MS (positive and negative): MS resolution: 70000, MS AGC target: 5×10^5 , MS maximum injection time: 50 ms, mass range: m/z = 70-1050. DIA (positive and negative): MS² resolution: 17500, MS² AGC target: 2×10^5 , MS² maximum injection time: 50 ms, MS² isolation window: 1 Da, loop count: $9 \times$ number of compounds measured.

Gene family search. Gene sequences associated to a gene family were retrieved from the JGI Integrated Microbial Genomes & Microbiome samples database (<u>https://img.jgi.doe.gov/</u>)^{2,3}. In "Cassette Search", genomes from domain "Bacteria", selection "Cyanobacteria" (Finished, Permanent Draft and Draft) were chosen. Using the "Pfam" protein cluster option, genomes were searched for "pfam03321" (GH3 gene family), "pfam04055" (radical SAM gene family) or "pfam02310,pfam04055" (Logical Operator "And"; cobalamin binding domain and radical SAM superfamily, corresponding to radical SAM class B family.)

Estimation of environmental transformation rates. An estimated biomass-normalized firstorder transformation rate equivalent was calculated from the final remaining fraction of compound (C/C_0) , the experiment duration (t), and the average dry biomass during the experiment (B). From equation (1), the rate results as equation (2).

$$C = C_0 e^{-ktB}$$
(1)
$$k = \frac{-\log C/C_0}{Bt}$$
(2)

For comparison with literature values from OECD 308/309 tests, DT_{50} values were converted to degradation rate constants using equation (3).

$$k = \frac{-\log 0.5}{DT_{50}}$$
 (3)

Code	Name	Compound class	present i	n mixes	Formula	Molecular	Exact mass	log Ko	w	CAS	Vendor
			1	2		weight [Da]					
ATE	Atenolol	Pharmaceutical	х	Х	$C_{14}H_{22}N_2O_3$	266.3	266.163044	0.16	[2]	29122-68-7	Sigma-Aldrich
BEZ	Bezafibrate	Pharmaceutical	х	Х	C ₁₉ H ₂₀ CINO ₄	361.8	361.108084	4.25	[4]	41859-67-0	Sigma-Aldrich
CBDZ	Carbendazim	Pharmaceutical	х	Х	$C_9H_9N_3O_2$	191.2	191.069474	1.48	[1]	10605-21-7	Dr. Ehrenstorfer
MEF	Mefenamic acid	Pharmaceutical	х	Х	$C_{15}H_{15}NO_2$	241.3	241.110284	5.12	[2]	61-68-7	Sigma-Aldrich
MPL	Metoprolol	Pharmaceutical	х	Х	C ₁₅ H ₂₅ NO ₃	267.4	267.183444	1.88	[2]	37350-58-6	Sigma-Aldrich
RAN	Ranitidine	Pharmaceutical	х	Х	$C_{13}H_{22}N_4O_3S$	314.4	314.141262	0.27	[2]	66357-35-5	Sigma-Aldrich
TRA	Tramadol	Pharmaceutical	х	Х	C ₁₆ H ₂₅ NO ₂	263.4	263.188534	2.4	[2]	27203-92-5	Fluka
VFX	Venlafaxine	Pharmaceutical	Х	Х	$C_{17}H_{27}NO_2$	277.4	277.204184	3.28	[3]	93413-69-5	TRC Canada
VPL	Verapamil	Pharmaceutical	х	Х	$C_{27}H_{38}N_2O_4$	454.6	454.283154	3.79	[2]	52-53-9	Sigma-Aldrich
AZY	Azoxystrobin	Strobilurin fungicide	х	Х	$C_{22}H_{17}N_3O_5$	403.4	403.116824	2.5	[1]	131860-33-8	Fluka
FXS	Fluoxastrobin	Strobilurin fungicide	х	Х	$C_{21}H_{16}CIFN_4O_5$	458.8	458.079326	2.86	[1]	361377-29-9	Dr. Ehrenstorfer
KME	Kresoxim-methyl	Strobilurin fungicide	Х	Х	$C_{18}H_{19}NO_4$	313.3	313.131404	3.4	[1]	143390-89-0	Dr. Ehrenstorfer
PYR	Pyraclostrobin	Strobilurin fungicide	х	Х	C ₁₉ H ₁₈ CIN ₃ O ₄	387.8	387.098584	3.99	[1]	175013-18-0	Fluka
TFL	Trifloxystrobin	Strobilurin fungicide	х	Х	$C_{20}H_{19}F_3N_2O_4$	408.4	408.129694	4.5	[1]	141517-21-7	Dr. Ehrenstorfer
CYP	Cyproconazole	Azole fungicide (agric.)	Х		C ₁₅ H ₁₈ CIN ₃ O	291.8	291.113844	3.09	[1]	94361-06-5	Dr. Ehrenstorfer
DIF	Difenoconazole	Azole fungicide (agric.)	х		$C_{19}H_{17}CI_2N_3O_3$	406.3	405.064697	4.36	[1]	119446-68-3	Dr. Ehrenstorfer
EPO	Epoxiconazole	Azole fungicide (agric.)	х		$C_{17}H_{13}CIFN_3O$	329.8	329.073114	3.3	[1]	106325-08-0	Dr. Ehrenstorfer
FLU	Fluconazole	Azole fungicide (pharm.)	х		$C_{13}H_{12}F_2N_6O$	306.3	306.104064	0.4	[2]	86386-73-4	Dr. Ehrenstorfer
KET	Ketoconazole	Azole fungicide (pharm.)	х		$C_{26}H_{28}CI_2N_4O_4$	531.4	530.148761	4.35	[2]	65277-42-1	Sigma-Aldrich
MET	Metconazole	Azole fungicide (agric.)	х		C ₁₇ H ₂₂ CIN ₃ O	319.8	319.14514	3.85	[1]	125116-23-6	Dr. Ehrenstorfer
PEN	Penconazole	Azole fungicide (agric.)	х		$C_{13}H_{15}CI_2N_3$	284.2	283.064303	3.72	[1]	66246-88-6	Novartis
PRO	Propiconazole	Azole fungicide (agric.)	Х		$C_{15}H_{17}CI_2N_3O_2$	342.2	341.069784	3.72	[1]	60207-90-1	HPC Standards GmbH
TEB	Tebuconazole	Azole fungicide (agric.)	Х		C ₁₆ H ₂₂ CIN ₃ O	307.8	307.145144	3.7	[1]	107534-96-3	Dr. Ehrenstorfer
SMZ	Sulfamethoxazole	Pharmaceutical:antibiotic	Х		$C_{10}H_{11}N_3O_3S$	253.3	253.052114	0.89	[2]	723-46-6	Sigma-Aldrich

 Table S1 Used compounds , chemical formulas, molecular weights log Kow values, CAS numbers and sources.

(agric.): in agricultural use, (pharm.) in pharmaceutical use [1]: Data from Pesticide Properties Database⁴ [2]: Data from DrugBank⁵ [3]: Data from PubChem (CID: 5656)⁶ [4]: No experimental value for the log Kow of BEZ could be found; the used value is calculated using EPI-Suite⁷

Parent		Transformation product	CAS No.	Formula	m/z	RT [min]	internal standard
Atenolol	ATE			C14H22N2O3	267.1703	11.3	Atenolol-D7
	ATE	Atenolol-desisopropyl	81346-71-6	C11H16N2O3	225.1234	7.9	Carbamazepine-10-11-epoxide- 13C-D2
	ATE, MPL	Atenolol/metoprolol acid	56392-14-4	C14H21NO4	268.1543	12.7	Atenolol/metoprolol acid-D5
Azoxystrobin	AZY			C22H17N3O5	404.1241	22.1	Azoxystrobin-D4
	AZY	Azoxystrobin acid	1185255-09-7	C21H15N3O5	390.1084	21.3	Azoxystrobin-D4, DEET-D10
Bezafibrate	BEZ			C19H20CINO4	362.1154	22.6	Bezafibrate-D4
	BEZ	3-[(4- chlorobenzoyl)amino]- propanoic acid	108462-95-9	C10H10CINO3	228.0422	19.5	Sulfadimethoxin-D4, Erythromycin-13C2
Carbendazim	CBDZ			C9H9N3O2	192.0768	13.9	Carbendazim-D4
Cyproconazole	CYP			C15H18CIN3O	292.1211	23.1	Epoxiconazole-D4
Difenoconazole	DIF			C19H17Cl2N3O3	406.0720	24.2	Propiconazole-D5
Epoxiconazole	EPO			C17H13CIFN3O	330.0804	23.4	Epoxiconazole-D4
Fluconazole	FLU			C13H12F2N6O	307.1113	17.5	Fluconazole-D4
Fluoxastrobin	FXS			C21H16CIFN4O5	459.0866	23.0	Epoxiconazole-D4
Ketoconazole	KET			C26H28Cl2N4O4	531.1560	19.2	Atomoxetin-D3, Erythromycin-13C2
Kresoxim-methyl	KME			C18H19NO4	314.1387	23.7	Epoxiconazole-D4
	KME	Kresoxim-methyl acid	181373-11-5	C17H17NO4	300.1230	23.4	Epoxiconazole-D4
Mefenamic acid	MEF			C15H15NO2	242.1176	24.7	Mefenamic acid-D3
Metconazole	MET			C17H22CIN3O	320.1524	24.2	Propiconazole-D5
Metoprolol	MPL			C15H25NO3	268.1907	15.6	Metoprolol-D7
Penconazole	PEN			C13H15Cl2N3	284.0716	23.9	Tebuconazole-D6
Propiconazole	PRO			C15H17Cl2N3O2	342.0771	24.0	Propiconazole-D5
Pyraclostrobin	PYR			C19H18CIN3O4	388.1059	24.0	Tebuconazole-D6
Ranitidine	RAN			C13H22N4O3S	315.1485	11.3	Ranitidine-D6
	RAN	Ranitidine S-oxide	73851-70-4	C13H22N4O4S	331.1435	7.0	Carbendazim-D4
	RAN	Ranitidine N-oxide	73857-20-2	C13H22N4O4S	331.1435	11.7	Carbendazim-D4
Sulfamethoxazole	SMZ			C10H11N3O3S1	254.0594	16.3	Sulfamethoxazole-D4
	SMZ	N-Acetyl-Sulfamethoxazole	21312-10-7	C12H13N3O4S	296.0700	17.9	N-Acetyl-Sulfamethoxazole-D5
Tebuconazole	TEB			C16H22CIN3O	308.1524	23.9	Tebuconazole-D6
Trifloxystrobin	TFL			C20H19F3N2O4	409.1370	24.2	Propiconazole-D5
	TFL	Trifloxystrobin acid	252913-85-2	C19H17F3N2O4	395.1213	23.9	Tebuconazole-D6 (*)

Table S2 Parents and transformation products with internal standards used for quantification

Tramadol	TRA			C16H25NO2	264.1958	15.5	Tramadol-D6
	TRA	N,N-didesmethyltramadol	931115-27-4	C14H21NO2	236.1645	16.1	Tramadol-D6
	TRA	N-desmethyltramadol	73806-55-0	C15H23NO2	250.1802	16.0	Tramadol-D6
	TRA	Tramadol N-oxide	147441-56-3	C16H25NO3	280.1907	16.0	Atrazine-desethyl-15N3
Venlafaxine	VFX			C17H27NO2	278.2115	17.2	Venlafaxine-D6
	VFX	N-desmethylvenlafaxine	149289-30-5	C16H25NO2	264.1958	17.3	Venlafaxine-D6
	VFX	N,N- didesmethylvenlafaxine	93413-77-5	C15H23NO2	250.1802	17.3	N,O-didesmethylvenlafaxine-D3
	VFX	N,O- didesmethylvenlafaxine	135308-74-6	C15H23NO2	250.1802	15.3	N,O-didesmethylvenlafaxine-D3
	VFX	O-desmethylvenlafaxine	93413-62-8	C16H25NO2	264.1958	15.2	O-desmethylvenlafaxine-D6
	VFX	Venlafaxine N-oxide	1094598-37-4	C17H27NO3	294.2064	17.8	Venlafaxine-D6
Verapamil	VPL			C27H38N2O4	455.2904	18.2	Verapamil-D6
	VPL	D617	34245-14-2	C17H26N2O2	291.2067	23.2	Verapamil-D6, Atorvastatin-D5

(*): quantified by relative peak area in single species experiments

Formula Mass difference Loss Description Type Name Gain difference parent 0.0000 no change Reductions, oxidations, skeleton substitutions (CHNO) 01 Hydroxlation oh 15.9949 0 deme -14.0157 CH3 Н C-1H-2 Demethylation deet -28.0313 C2H5 Н C-2H-4 Deethylation deh2 -2.0157 H2 H-2 General reduction H2 h2 2.0157 H2 General oxidation -18.0106 H2O deh2o H-2O-1 Dehydration H2O Hydration h2o 18.0106 H2O1 -43.9898 CO2 C-10-2 Decarboxylation deco2 deno2 -44.9851 NO2 Н H1N-1O-2 Nitro group loss meoxi 29.9742 H O2H 02 Methyl oxidation to carboxylic acid deamin -15.0109 H NH2 N1H1 Deamination Alcohol oxidation to acid 13.9793 H2 01H-2 oxicooh Ο H2O-2 H2 nitrored -29.9742 02 Nitro reduction disnhox 0.9840 NH2 OH O1N-1H-1 Amine to hydroxy (ipso-)substitution -42.0470 C3H7 deipr Н C-3H-6 Isopropyl loss NH2 amin -0.9840 OH N10-1H1 Hydroxy to amine (ipso-)substitution Reductions, oxidations (CI, F) -33.9610 CI Н H1CI-1 Reductive dechlorination clXh -17.9906 F Н disf H1F-1 Reductive defluorination disclox -17.9661 CI OH O1H1CI-1 Oxidative dechlorination -1.9957 F ОН Oxidative defluorination disfox O1H1F-1 Conjugation-type reactions: methylation 14.0157 H CH3 me C1H2 Methylation 28.0313 H et C2H5 C2H4 Ethylation / di-methylation Conjugation-type reactions: amino acid conjugation Leucine / isoleucine leu 113.0841 H2O C6N1H13O2 C6N1H11O1 128.0950 H2O C6N2H14O2 C6N2H12O1 Lysine lys 131.0405 H2O C5N1S1H11O2 C5N1S1H9O1 Methionine met 147.0684 H2O Phenylalanine phe C9N1H11O2 C9N1H9O1 thr 101.0477 H2O C4N1H9O3 C4N1H7O2 Threonine try 186.0793 H2O C11N2H12O2 C11N2H10O1 Tryptophan val 99.0684 H2O C5N1H11O2 C5N1H9O1 Valine 156.1011 H2O arg C6N4H14O2 C6N4H12O1 Arginine 137.0589 H2O C6N3H9O2 C6N3H7O1 Histidine his ala 71.0371 H2O C3N1H7O2 C3N1H5O1 Alanine 114.0429 H2O C4N2H8O3 C4N2H6O2 Asparagine asn 115.0269 H2O C4N1H7O4 C4N1H5O3 Aspartate asp 103.0092 H2O cys C3N1S1H7O2 C3N1S1H5O1 Cysteine glu 129.0426 H2O C5N1H9O4 C5N1H7O3 Glutamate 128.0586 H2O gln C5N2H10O3 C5N2H8O2 Glutamine 57.0215 H2O C2N1H5O2 C2N1H3O1 Glycine gly Proline pro 97.0528 H2O C5N1H9O2 C5N1H7O1 Serine ser 87.0320 H2O C3N1H7O3 C3N1H5O2 Tyrosine tyr 163.0633 H2O C9N1H11O3 C9N1H9O2 adda 313.2042 H2O C20H29NO3 C20N1H27O2 ADDA [1] Conjugation-type reactions: other gluc 176.0321 H C6H9O6 C6O6H8 Glucuronidation 42.0106 H C2H3O C2O1H2 (N-)acetylation nac 79.9568 H sulf HSO3 S103 Sulfate conjugation 305.0682 H C10H15N3O6S C10H15N3O6S1 Glutathione conjugation gsh 162.0225 H naccys C5H8NO3S C5H8N1O3S1 (N-)acetylcysteine conjugation

Table S3 Suspect screening lists used for transformation product prediction.

[1] ADDA is a non-proteinogenic amino acid found in toxic cyanobacterial peptides, e.g. microcystin.⁸

S2. Supplementary Results

S2.1 Bioconcentration

Figure S1 Growth curves for single culture experiments (a) and mixture experiments (b,c). a) Dark blue: Mcy, light blue: Syn, green: Chl. Solid lines: cultures treated with chemicals, dashed lines: chemical-free control. Note: The lines for Syn overlap completely, which is why the chemical control is not visible. b) Mixture experiments with stressors at 100 ng/L, blue: no stressor, yellow: atrazine, brown: irgarol, olive: triclosan, blue dashed: chemical-free control. c) Mixture experiments with stressors. Blue: no stressor; yellow: atrazine 100 ng/L; red: azoles 10 μ g/L, turquoise: atrazine and azoles; blue dashed: chemical-free control.

		Micr	ocystis		Synec	hococcus	C	Chlamydomonas		
	medium	cells	TPs	medium	cells	TPs	medium	cells	TPs	
Atenolol	95%	0%		87%	0%	ATE/MPL-A: 7%	102%	0%		
Azoystrobin	102%	0%		95%	0%		107%	0%		
Bezafibrate	96%	0%	BEZ-da: <1%*	93%			100%		BEZ-da: <1%*	
Carbendazim (see S2.3)	99%			94%		(CBDZ-M: 1%*)	104%			
Cyproconazole	101%	0%		95%	0%		102%	0%		
Difenoconazole	83%	0%		77%	4%		98%	2%		
Epoxyconazole	97%	0%		92%	1%		100%	0%		
Fluconazole	97%			94%			101%			
Fluoxastrobin	103%	0%		90%	2%		108%	0%		
Ketoconazole (see S2.4)	23%	3%	(7%*)	48%	0%	(7%*)	75%	1%	(8%*)	
Kresoxim-methyl	1%	0%	KME-A: 101%	68%	1%	KME-A: 29%	94%	0%	KME-A: 14%	
Mefenamic acid	89%	0%		85%		MEF-Glu: 9%*	96%			
Metconazole	95%	0%		93%	0%		104%	0%		
Metoprolol	94%	0%		93%			86%		ATE/MPL-A: 4% (medium) 2% (cells) MPL-dm: 6%*	
Penconazole	96%	0%		94%	0%		102%	0%		
Propiconazole	96%	0%		95%	0%		102%	0%		
Pyraclostrobin	85%	2%		61%	12%		96%	1%		
Ranitidine	84%	0%	RAN-dm: 4%*	89%	0%		94%	0%		
Sulfamethoxazole	66%	0%	SMZ-DHPt: 2%* SMZ-Pt: 3%* SMZ-PtO: 3%*	38%	0%	SMZ-AcOH: 2%*	98%	0%		
Tebuconazole	96%			93%			102%			
Tramadol	119%			117%			125%			
Trifloystrobin	2%	0%	TFL-A: 101%*	49%	8%	TFL-A: 28%*	96%	1%	TFL-A: 7%*	
Venlafaxine	101%			100%			106%			
Verapamil	69%	0%	VPL-da: 1%	90%	0%	VPL-da: <1%	97%	0%	VPL-da: <1%	

 Table S4: Mass balance of studied compounds after 4 days.

"medium": parent substance in medium. "cells": parent substance in cells. "TPs": transformation products. (*): quantified using peak area ratio. Unless otherwise noted, TPs were only found in medium. Values are the mean of three replicates.

	Мсу	Syn	Chl
ATE	2.2	1.4	1.5
AZY	0.9	1.5	2.3
BEZ	1.1	-	-
CBDZ	-	-	-
CYP	1.3	1.7	1.9
DIF	2.5	2.8	3.3
EPO	1.4	1.7	2.5
FLU	-	-	-
FXS	1.7	2.4	2.3
KET	2.7	2.5	3.1
KME	-	-	2.7
MCZ	1.6	2.0	2.4
MEF	2.2	-	-
MPL	1.4	-	-
PEN	1.5	-	2.2
PRO	1.0	-	-
PYR	3.2	3.1	2.9
RAN	1.3	-	1.9
SMZ	1.5	1.9	-
TEB	-	-	-
TFL	-	3.0	2.9
TRA	-	-	-
VFX	-	-	-
VPL	2.1	1.9	1.8

Table S5 Individual apparent log bioconcentration factors for each compound in the three species Mcy, Syn and Chl.

Mean log BCF were calculated from the point of apparent equilibration. No log BCF was calculated for

- CBDZ, FLU, TRA, VFX (all species), BEZ, MPL, TEB, MEF (some species) because internal concentrations in cells were negligible
- KME for Mcy and ChI, and TFL for Mcy, because degradation was too rapid to reliably determine an (apparent) BCF

Figure S2 Log bioconcentration factor in dependence of log K_{ow} for a) Mcy, b) Syn and c) Chl. Red filled circles: azole fungicides; blue filled circles: strobilurin fungicides, black open circles: remaining compounds. Red, blue and black line: linear correlation for azole fungicides only (red), strobilurin fungicides only (blue), or all compounds (including azole and strobilurin fungicides; black).

Table	S6 log	K _{ow}	corre	lations	to	apparen	t b	ioconcen	trat	ion f	fact	or.	
-------	--------	-----------------	-------	---------	----	---------	-----	----------	------	-------	------	-----	--

		log BCF = a + b	* log K _{ow}		adjusted		
Species	Chem	а	b	R^2	R ²	p (b ≠ 0)
Мсу	all	1.39	0.11	0.06	-0.01	0.39	
Syn	all	1.23	0.30	0.49	0.43	0.017	(*)
Chl	all	1.53	0.29	0.53	0.49	0.004	(**)
Мсу	azoles	-2.38	1.09	0.71	0.63	0.036	(*)
Syn	azoles	-0.97	0.83	0.95	0.93	0.024	(*)
Chl	azoles	-0.86	0.92	0.82	0.76	0.035	(*)
Мсу	strobilurins	-2.64	1.47	0.98	0.97	0.083	
Syn	strobilurins	-0.01	0.72	0.80	0.71	0.1	
Chl	strobilurins	1.47	0.34	0.92	0.90	0.009	(**)

p (b \neq 0): p value for slope of the linear regression log BCD = a + b * log K_{ow}. (*): p < 0.05; (**): p <0.01

S2.2 Transformation product identification

Parent		m/z		Identification		MS2 spectra (MassBank)
ТР	Formula	[M+H]⁺	[M-H] ⁻	level	RT	(Bold: annotated spectrum in SI)
КМЕ	C18H19NO4	314.1386	(312.1240)			
KME-A	C17H17NO4	300.1234	(298.1088)	1	23.6	
TFL	C20H19F3N2O4	409.1368	(407.1222)			
TFL-A	C19H17F3N2O4	395.1213	(393.1067)	1	24.1	
6007	COU/0N/202	102 0767				
CBDZ M	C9H9N3U2	192.0767		Эh	15.6	FT270101 00 (mas)
		206.0926		20	15.0	ET27010109 (pos)
MEF	C15H15NO2	242.1175	240.1029			
MEF-Glu	C20H22N2O5	371.161	369.1464	3	23.3	ET32010109 (pos)
						ET32015159 (neg)
						ET320152
SMZ	C10H11N3O3S	254.0593	252.0447			
SMZ-DHPt	C17H18N8O4S	431.1244	429.1098	3	16.6	
SMZ-Pt	C17H16N8O4S	429.1090	427.0944	2b	16.7	ET31020109 (pos)
						ET31025159 (neg)
				-		ET31020109 (merged)
SMZ-PtO	C1/H14N/05S	430.0930	428.0784	3	16.8	E131030109 (pos)
						ET31035159 (neg)
SM7-AC		296.0700	294 0554	1		L131020105 (merged)
SMZ-ACOH	C12H13N3O5S	312 0649	310 0503	3	16.8	FT310401, 09 (nos)
	0121113113035	512.0045	510.0505	5	10.0	ET31045159 (peg)
						ET301402
MPL	C15H25NO3	268.1906			15.5	
ATE	C14H22N2O3	267.1702			11.4	
MPL/ATE-A	C14H21NO4	268.1542		1	13.6	
MPL-dm	C14H23NO3	254.1750		2b	13.1	ET28010109 (pos)
			0.00 1.00 -		 -	
BEZ	C19H20CINO4	362.1152	360.1006		22.7	
BFT-q9	C15H14CINO2	276.0787	(274.0641)	2b	21.4	E129010109 (pos)
	C20422CINO4	276 1210		2 h	1 0 0	E1230103
	CZUNZZCINU4	210.1210		20	23.3	ET290201.09 (pos)

Table S7 Analytical summary of found transformation products.

Note: All retention times are given as found in the initial measurement. Retention times in the MassBank spectra may slightly differ if measured on a different chromatographic system, depending on system availability at the time. m/z values in parentheses: weak signal

Figure S3 pH-controlled experiments for strobilurin fungicides. Top 5 plots, a)-e): KME, TFL, AZY, FXS, PYR; dashed: KME-A, TFL-A. f) pH over time g) biomass (determined from optical density at 750 nm) over time. Blue: nominal pH 7.5, red: nominal pH 7.2, black (narrow): autoclave control pH 7.5, brown (narrow): autoclave control pH 7.2.

Figure S4 Sulfamethoxazole and metabolites in mixture experiments. a) SMZ, b) SMZ-Ac, c) SMZ-AcOH, d) SMZ-DHPT, e) SMZ-Pt, f) SMZ-PtO. Red: Mcy+Syn mixture, black: medium control. c/c_0 values are concentrations, or transformation product amounts semiquantified via peak area (marked *), relative to average initial parent concentration.

Figure S5 Formation of BEZ-da (a), BEZ-M (b) and ATE/MPL-A (c) under chemical stress. Blue: no stressor, yellow: atrazine, brown: irgarol, olive: triclosan, black: medium control. Top: 100 ng/L stressor concentration, bottom: 10 ng/L stressor concentration. All experiments without azole mixture. c/c_0 values are concentrations, or transformation product amounts semiquantified via peak area (marked *), relative to average initial parent concentration.

S2.3 Enzymatic transesterification of CBDZ with ethanol

In single species experiments with *Syn* and in *Mcy+Syn* combined experiments, a product (CBDZ-M, [M+H]⁺ 206.0926, RT: 15.6 min) consistent with a methylation product of CBDZ was found by suspect screening (Figure S6). Methylation of a nitrogen by a methyltransferase would be the most obvious explanation for the product. However, both the most straightforward manual interpretation of the spectrum and in-silico MS² spectra (using CFM-ID^{9,10}, see SI S3.2, SI S3.3) of possible structures suggest methylation on the methyl ester carbon, whereas no fragments provide evidence for a methyl group on the N.

This was initially hypothesized to be a carbon methylation reaction, which can be performed by radical S-adenosylmethionine-dependent enzymes (RS enzymes)¹¹. However, further experiments showed that formation of CBDZ-M is abolished when CBDZ is dissolved in isopropanol instead of ethanol, whereas small amounts of a corresponding product with addition of C_2H_4 was found. Therefore, the CBDZ-M product is likely formed by a transesterification with ethanol, rather than by methylation of the terminal CH3. Neither of these products is formed abiotically, supporting an enzymatic reaction (Figure S6).

This reaction shows an interesting xenobiotic pathway in Synechococcus. Enzymatic transesterification by ethanol is known, for example, for cocaine in humans and mice¹² Although this reaction is not relevant under environmental conditions reactions with other biological alcohols could potentially be of interest. Other TPs for CBDZ were not found; in particular there was no evidence for the formation of the hydrolysis product 2-aminobenzimidazole, which is commonly found in microbial biotransformation¹³.

Figure S6 Transesterification of CBDZ with EtOH. a) suggested reaction. b) CBDZ biotransformation in single-species experiments. Solid lines: CBDZ, dashed lines: CBDZ-M. Blue: *Mcy*, turquoise: *Syn*, green: *Chl*. Black: medium control. c)-d) CBDZ TP formation in solvent exchange experiments. c) CBDZ-M, d) CBDZ-C₂H₄. Dark blue: *Mcy+Syn*, Mix 1 in EtOH. Orange: *Mcy+Syn*, CBDZ in EtOH. Red: *Mcy+Syn*, CBDZ in isopropanol. Black: abiotic control. c/c0 values are parent concentration, or transformation product semiquantified via peak area (marked *), relative to average initial concentration.

S2.4 Abiotic transformation of KET

For KET, 25-75% dissipation after 4 days and >75% dissipation after 12 days was observed in single species experiments and a single TP ([M+H]⁺ 533.1353) was found. However, the substance was not consistently stable in medium controls, and the TP was found also in controls where KET loss was observed. While KET is documented to be long-term stable in aqueous solutions from pH 5-9 under presence of minimal amounts of antioxidant¹⁴, no information is available on its stability in solutions similar to WC medium; abiotic oxidation, potentially by indirect photochemistry, is a likely source for the TP.

S2.5 Estimation of environmental transformation rates

Estimated environmental biomass-normalized transformation rates (Table S8) were calculated for ATE as described in Supplementary Materials and Methods. To compare calculated rates with known values, DT_{50} values from literature were converted to degradation rates as described (Table S9). Phytoplankton biomass values for the eutrophic lake Greifensee (Switzerland) in the range of 4 mm³/L were used as a reference¹⁵. Using 0.47 pg/µm³ as a wet biovolume to dry weight conversion estimate¹⁶, a dry weight equivalent of 2 mg/L can be obtained. The contribution of phytoplankton was then estimated by multiplying the biomass-normalized rate with the biomass, and diving the obtained rate by the rate derived from DT_{50} values.

It should be noted that the observed data qualitatively do not match neither a first-order decay nor a pure biomass-dependent degradation, but likely involve some regulation dynamics. Therefore these values are to be seen as the roughest of estimates, however they should serve to get an order-of-magnitude estimate of the relevance of the observed reactions to environmental situations.

	%	log	time	biomass	norm. rate	
	remaining	degradation	[days]	[g/L]	[(d × g/L)-1]	
ATE (Syn)	65	-0.19	12	0.2	0.08	
ATE (Mcy+Syn)	85	-0.07	5	0.1	0.14	

Table S8 Estimation of	f environmental	transformation	rates for ATE
------------------------	-----------------	----------------	---------------

"norm. rate": estimated dry biomass normalized first order degradation rate.

Table S9 Estimation of phytoplankton contribution to environmental transformation rates.

	norm. rate	biomass	env.rate	DT ₅₀	lit. rate	contribution
	[(d × g/L) ⁻¹]	[g/L]	[d-1]	[d]	[d-1]	[%]
ATE (Syn)	0.08	0.002	1.6 × 10 ⁻⁴	12 8 60 217	0.004 to 0.025	0.6 to 4
ATE (Mcy+Syn)	0.14	0.002	2.8 × 10 ⁻⁴	12.0-09.3	0.004 10 0.025	1 to 7

"norm. rate": estimated dry biomass normalized first order degradation rate. "env.rate": estimated contribution to environmental first-order degradation with given biomass. "lit. rate": Literature DT_{50} converted to first-order degradation rate.

S3. Spectra and Data for Transformation Products

S3.1 Structure Elucidation of MEF-Glu

S3.2 Structure Elucidation of CBDZ-M

S3.3 Comparison of CBDZ-M spectrum to predicted CFM-ID spectra.

Top: MS2 spectrum, positive mode, parent [M+H]⁺ 206.0924, merged spectra (collision energies NCE 15, 30, 45, 60, 75, 90) by absolute intensity. MassBank reference: ET270101-ET270109.

Bottom: In-silico MS2 spectrum, CFM-ID, positive mode, merged spectra (collision energy 10 eV, 20 eV, 40 eV).

S3.4 Structure elucidation of SMZ-Pt

S3.5 Structure elucidation of SMZ-PtO

S3.6 Structure elucidation of SMZ-AcOH

S3.7 Structure elucidation of BEZ-da

S3.8 Structure elucidation of BEZ-M

S3.9 Structure elucidation of RAN-dm

Top : MS2 spectrum, positive mode, parent [M+H]⁺ 301.1329, collision energy NCE 30. Automated formula annotation (RMassBank). MassBank reference: ET300102.

Bottom: Library MS2 spectrum, ranitidine, [M+H]⁺ 315.1485, collision energy NCE 30. Automated formula annotation (RMassBank). MassBank reference: EA019603.

Proposed Structure (modification in red) and Fragmentation:

Confidence level: Level 2b

Additional evidence for structure interpretation:

The loss of NHCH3 (m/z 270) is diagnostic for the mono-demethylation on the dimethyl-N. Fragment 176 is diagnostic for the retention of methyl on the monomethyl-N.

References

- 1 R. R. L. Guillard and C. J. Lorenzen, *J. Phycol.*, 1972, **8**, 10–14.
- V. M. Markowitz, I.-M. A. Chen, K. Palaniappan, K. Chu, E. Szeto, M. Pillay, A. Ratner, J. Huang, T. Woyke, M. Huntemann, I. Anderson, K. Billis, N. Varghese, K. Mavromatis, A. Pati, N. N. Ivanova and N. C. Kyrpides, *Nucleic Acids Res.*, 2014, **42**, D560–D567.
- 3 V. M. Markowitz, I.-M. A. Chen, K. Chu, E. Szeto, K. Palaniappan, M. Pillay, A. Ratner, J. Huang, I. Pagani, S. Tringe, M. Huntemann, K. Billis, N. Varghese, K. Tennessen, K. Mavromatis, A. Pati, N. N. Ivanova and N. C. Kyrpides, *Nucleic Acids Res.*, 2014, **42**, D568–D573.
- 4 K. A. Lewis, J. Tzilivakis, D. J. Warner and A. Green, *Hum. Ecol. Risk Assess. Int. J.*, 2016, **22**, 1050–1064.
- 5 D. S. Wishart, *Nucleic Acids Res.*, 2006, **34**, D668–D672.
- 6 National Center for Biotechnology Information, .
- 7 US EPA, *Estimation Programs Interface Suite™ for Microsoft*® *Windows, v 4.11*, United States Environmental Protection Agency, Washington, DC, USA., 2016.
- 8 K. Harada, S. Imanishi, H. Kato, M. Mizuno, E. Ito and K. Tsuji, *Toxicon*, 2004, **44**, 107–109.
- 9 F. Allen, R. Greiner and D. Wishart, *Metabolomics*, 2014, **11**, 98–110.
- 10 F. Allen, A. Pon, M. Wilson, R. Greiner and D. Wishart, *Nucleic Acids Res.*, 2014, **42**, 94–99.
- 11 M. R. Bauerle, E. L. Schwalm and S. J. Booker, *J. Biol. Chem.*, 2015, **290**, 3995–4002.
- 12 C. S. Boyer and D. R. Petersen, *J. Pharmacol. Exp. Ther.*, 1992, **260**, 939–946.
- 13 S. Kern, R. Baumgartner, D. E. Helbling, J. Hollender, H. Singer, M. J. Loos, R. P. Schwarzenbach and K. Fenner, *J. Environ. Monit.*, 2010, **12**, 2100–11.
- 14 M. Skiba, M. Skiba-Lahiani, H. Marchais, R. Duclos and P. Arnaud, *Int. J. Pharm.*, 2000, **198**, 1–6.
- 15 E. Rott, Schweiz. Z. Für Hydrol., 1981, 43, 34–62.
- 16 C. S. Reynolds, *Ecology of phytoplankton*, Cambridge University Press, Cambridge; New York, 2006.
- 17 AstraZeneca, Environmental Risk Assessment Data: Atenolol, 2013.
- 18 M. K. Richter, A. Focks, B. Siegfried, D. Rentsch, M. Krauss, R. P. Schwarzenbach and J. Hollender, *Environ. Pollut.*, 2013, **172**, 208–15.
- 19 R. Tuytten, F. Lemière, W. Dongen, E. L. Esmans, E. Witters, W. Herrebout, B. Veken, E. Dudley and R. P. Newton, *J. Am. Soc. Mass Spectrom.*, 2005, **16**, 1291–1304.
- 20 J. Sultan, Int. J. Mass Spectrom., 2008, 273, 58–68.