Supporting information: A. sampling sites and bulk chemical and mineralogical composition of the soil samples Figs. S1-S6, Table S1; B. SEM-BSE images of *MSC* and *MOM (*Figs. S7-S10); C. TEM. SAED and STEM-EDS images of all identified phases (S11-S28); D. Table S29, Point of zero charges for selected phases identified in this study.

Supplementary data A

Sampling sites Figure S1 and S2

Bulk mineralogical composition Figures S3-S6

Bulk composition Table S1

Figure S1, Sampling site North, May 2016

Figure S2, Sampling site South East, May 2016

Counts per seconds

Counts per seconds

Table S1. Bulk chemical analysis

	Analyte: Unit:	AI	√l As ‰ppm	B ppm	Ba ppm	Bi ppm	Ca %	Cd ppm	Ce ppm	Co ppm	Cs ppm	Cu ppm	Fe %
		%											
Sample Description	RDL:	0.01	30	20	0.5	0.1	0.05	0.2	0.1	0.5	0.1	5	0.01
North site 1		5.78	843	28	1050	35	1.27	28.5	61	19.4	2.7	566	3.66
North site 2		6.11	820	24	1130	32.7	1.36	35.5	53	10.3	3.2	610	3.75
South East site 3		6.6	440	21	950	17.5	1.51	24.2	61	10.2	3.2	450	3.6
South East site 4		6.32	470	23	1060	20.2	1.42	23.1	76	23.3	3	465	3.47

	Analyte: Unit:	ĸ	Mg	Mn	P %	Pb ppm	S %	Sb ppm	Si %	Sn ppm	Sr ppm	Ті %	Zn ppm
		%	%	ppm									
Sample Description	RDL:	0.05	0.01	10	0.01	5	0.01	0.1	0.01	1	0.1	0.01	5
North site 1		1.4	0.61	590	0.34	16600	0.32	766	22.6	146	343	0.33	3520
North site 2		1.62	0.71	695	0.37	14000	0.26	720	21.5	125	382	0.38	3850
South East site 3		1.61	0.72	745	0.44	8800	0.21	440	23.2	112	352	0.35	2440
South East site 4		1.55	0.67	638	0.48	10100	0.24	360	21.9	80	375	0.38	2590

Supplementary data B1

SEM-BSE images of Mineral surface coatings

Figures S7 North site S8 South East site

Elements are listed if their concentrations are above 1 at%;

' S7

Pb-S-Si

200µm Pb-S-Zn-Si

700µm Pb-S-Si

Pb-S-Zn-Fe-Ti-Si

300µm

Supplementary data B2 SEM-BSE images of (partly) mineralized organic features in the soils at both sampling sites

- Figures
- S9 North site
- S10 North site / South-East site
- All MOM are mainly composed of C, O and most likely H.
- Other elements are only listed
- if their concentrations are above 1 at%

Ba-S-Al-Si

400µm

Pb-S-Al-Si

Pb-S-Fe-Al-Si

100µm ¹

Pb-S-Fe-P-Al-Si

K-Mg-Fe-Al-Si

100µm

Pb-S-Fe-P-Al-Si

Pb-S-Fe-P-Al-Si

Fe-As-P-Al-Si

Pb-S-Sb-Fe-Mn-P-Al-Si

Pb-S-Fe-Si

Pb-S-Ca-K-Na-P-Al-Si

NEsite

Fe-P-Al-Si

100µm

Fe-S-P-Al-Si

SEsite

400µm Pb

Pb-Fe-Al-P-Si

Zn-S-Al-Si

Supplementary data C1

Nano-phases TEM images and diffraction pattern for the mineral surface coating

Silica matrix

Broad peak between d = 4.1 and 4.4 Å characteristic for Opal A/C/CT

Diffraction spots for anglesite nanoparticles

Fluorapatite, (Ca+Pb) : P : F = 5 : 3 : 1 Ca: Pb = 10 : 1

Illite+ Nanoparticles of anglesite

K: Al: Si = 1: 3: 7

S13

Si: green Al: Blue Pb: red

Parallel growth of anglesite on the surface of illite

Pb: red P: green Zn: blue

Detrital rounded grains of Franklinite, ZnFe2O4

Blue crystals: Zn : Fe = 1:2

Pb: red Fe: green As: blue

Fe: (As+S) = 1: 1

D=6.86
D=3.4
D=2.8
D=2.5

Tsumcorite Group

Formula:AM(XO4)²(OH,H²O)² A group of complex phosphates, arsenates, vanadates and sulphates with a complicated crystal chemistry (symmetry either triclinic or monoclinic, depending on various ordering schemes).

In the general formula given above, A is typically Pb or Ca, rarely Bi, M is typically Fe³⁺ Mn, Cu, Zn, Co or Ni and X is typically P, As or V

andalusite crystals (blue) in spherical quartz grains (green)

Pb: red Si: green Al: blue

Blue crystals: Al : Si = 2 : 1

D= 4.8 D=2.5 D=2.0

- Fe: green Al: blue Pb: red
- Fe: green Zn: blue Si: red
- Zn-bearing spinels: Franklinite and Zn-magnetite Fe: Zn ratios vary between 2 : 1 and 3 : 1

Pb: red Zn: green Sb: blue

Mixture of various spinels Fe : Zn : Sb = 4 : 7 : 2 Possible Sb-spinel: Zn-Sb(V) spinel Zn₇Sb₂O₁₂

carbonaceous material material (red) with Sb-bearing nanoparicles inclusions (green)

Unidentified Sb-bearing Nanoparticles

Supplementary data C1

TEM, SAED and EDS-STEM images of nano-size phases in the mineralized organic matter

All listed elemental ratios are given as atomic ratios

Kintoreite, mineralized organic matter

P in red Pb in blue P:As = 3:1-4:1 Fe:Al = 3:1-4:1 (P+As):Pb = 3:1

Franklinite with anglesite nanoparticles in the mineralized organic matter

Zn in red Zn : (AI + Fe) = 1 : 2 Fe in green Pb in blue

Anglesite spots D=5.4 D=3.8 D=1.4

Nano-diffraction of anglesite nanoparticles on the surface of franklinite with spots belong to franklinite

Blue: nanoparticles of anglesite Pb : S = 1 ; 1

Intergrowth of crystals of gahnite (Zn : Al =1:2, yellow/green) and a Zn-Al-Ti-(hydr)oxide phase (Zn : Al = 4: 1; violet) SAED pattern display most commonly diffraction spots of both phases

The Zn-Al –Ti oxides in this sections are composed of hydroxides with mainly Zn. The latter layers are decorated with tetrahdra or OH groups and have characteristics d-spacings of d = 7.65 and d = 4.0

Intergrowth of linarite PbCu(OH)2(SO4) (Yellow, Cu : S ~ 1: 1) with kintoreite (blue)

Supplementary data D, Table S29

Selected minerals identified in the MSC and MOM and their point of zero charge

Mineral	Point of zero charg	ge
anglesite	4 ³	1 M. Kosmulski, <i>J. Coll. Interface Sci.</i> (2009), 377 , 439-448.
Synthetic hydroxyapatite	7.7-8.1 ¹	2 M. Kosmulski, <i>Adv. Coll. and Interface Sci.</i> (2016), 238 , 1-61.
Kintoreite	~3-6	
Fe ₃ (PO ₄) ₃	3.3 ⁵	3 M.C. Fuerstenau, S.A. Olivas, R. Herrera-Urbina, and K.N. Kank, <i>Inter. J.</i> <i>Mineral Process.</i> (1987), 20 , 73-85.
Fe ₃ (PO ₄) ₂ (H ₂ O) ₈	40-5.6 ¹	
FePO₄(am)	3 4	4. G. De Tommaso, and M. Luliano, <i>J. Chem. Eng. Data</i> (2012) , 57 , 52–59
Al-rich spinel	9 ¹	5. D. Luna-Zaragoza, E.T. Romero-
(amorphous MgAl ₂ O ₄)		Guzmán and L.R. Reyes-Gutiérrez, <i>J.</i> <i>Minerals & Materials Character & Eng.</i> (2009), 8 , 591-609.
Fe-rich spinel	6.2-8.5 ¹	
(magnetite)		
hydrous silica	4.1 ¹	
(listed as precipitated silica)		
illite	2.5 ¹	
Quartz	2-3 ²	520