Electronic Supplementary Material (ESI) for Environmental Science: Processes & Impacts. This journal is © The Royal Society of Chemistry 2017

1	Electronic Supplementary Information (ESI)
2	Transferring mixtures of chemicals from sediment to a bioassay using silicone-
3	based passive sampling and dosing
4	
5	Lukas Mustajärvi ^a , Ann-Kristin Eriksson-Wiklund ^a , Elena Gorokhova ^a , Annika Jahnke ^b , and
6	Anna Sobek ^a
7	
8	^a Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, Sweden
9	^b Department of Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Germany
10	* Corresponding author.
11	E-mail addresses:
12	Lukas.Mustajarvi@aces.su.se (L. Mustajärvi)*
13	Ann-Kristin. Eriksson-Wiklund@aces.su.se (AK. Eriksson-Wiklund)
14	Elena.Gorokhova@aces.su.se (E. Gorokhova)
15	Annika.Jahnke@ufz.de (A. Jahnke)
16	Anna.Sobek@aces.su.se (A. Sobek)
17	
18	
19	
20	
21	
22	
23	
24 25	
26	
-	

	Table ESI 1	Spiking solutions with respective chemicals and concentrations	ESI-2
	Table ESI 2	Chemicals used to investigate stability of dosing conditions during	ESI-2
		repeated usage of dosing system	
	Table ESI 3	ANOVA test statistics output, testing differences between experimental	ESI-3
		(control) runs	
	Table ESI 4	General Linear Model output, testing the effect of the exposure level	ESI-3
	Table ESI 5	Unpaired t-test output, testing the difference between the ambient	ESI-3
		exposure level (1:1) and the corresponding control.	
	Table ESI 6	Pore water concentration [pg L-1]; PAHs and PCBs	ESI-4
	Table ESI 7	Polymer-water partition coefficients (K_{p-w}) from literature	ESI-5
	Figure ESI 1	Linear regression of the mass of PCBs quantified in extracts versus the	ESI-9
		mass of polymer in the coated jar.	
	Text ESI 1	Chemicals and materials	ESI-11
	Text ESI 2	Study site and sediment sampling	ESI-12
27			
28			
29			
30			
31			
22			
32			
33			

37 Table ESI 1. Spiking solutions with respective chemicals and concentrations [ng μL^{-1}]

	Spiking solution	Chemical	ng μL-1
	1	PCB 52	24
	2	PCB 28, PCB 52, benzo(a)pyrene	68, 118, 84
	3	PCB 28, benzo(a)pyrene	134, 173
	4	anthracene, pyrene	1.9, 4.9
	5	anthracene, pyrene	3.6, 9.8
38			

39 Table ESI 2 .Chemicals used to investigate changes in the chemical composition after repeated usage of

40 passive dosing vials and their respective log K_{ow} .

	log K _{ow}	Ref.
Monochlorphenol (4-)	2.39	1
Dicholorphenol (2,6-)	2.75	1
Dicholorphenol (3,5-)	3.62	1
γ -Hexachlorocyclohexane (γ -HCH)	3.72	1
Acenaphthene	3.97	2
Triclosan	4.76	3, 4
Pyrene	5.06	2
PCB 28	5.92	5
PCB 153	7.31	5

41

43 Table ESI 3. ANOVA test statistics output, testing differences in the percentage of dead algal cells in

44 controls between experimental runs. SS=Sum of squares, DF= degree of freedom, MS=mean of squares,

45 F = test statistics, p = value; significance level p < 0.05. The data were Box-Cox transformed to approach

46 normal distribution.

	SS	DF	MS	F	р
Intercept	0.000074	1	0.000074	10.21	0.01
experiment	0.000024	3	0.000008	1.09	0.41
Error	0.000058	8	0.000007		

47

48 Table ESI 4. Output of the Generalized Linear Model (GLM) with normal error structure and log-link

49 output that was applied to test the effect of the exposure level on the percentage of dead cells in the

50 population (A) (degree of freedom = 22) and the corresponding normal probability plot of residuals (B);

51 significance level p < 0.05. The data were Box-Cox transformed to approach normal distribution.

52 A)

	Estimate	Standard	Wald	p value
Intercept	-13.1576	2.5384	26.86	< 0.0001
exposure level	4.2238	1.1882	12.63	0.0004
Scale	0.0034	0.0005	48.00	< 0.0001

53

54 B)

57 Table ESI 5. Unpaired t-test output, testing the difference in between the percentage of dead algal cells

58 between the ambient exposure level (1:1) and the corresponding control. t-value= test statistics, DF=

⁵⁹ degree of freedom, p = value; significance level p < 0.05.

	Mean control	Mean 1:1 exposure	t-value	DF	р
	0.001990	0.003621	-1.63187	4	0.178044
60					
61					
62					
63					
64					
65					
66					
67					
68					
69					
70					
71					

80 Table ESI 6. Pore water concentration of PAH and PCBs in sediment (0-20 cm) sampled in Ålöfjärden,

- 81 Baltic Sea, measured with coated jars, given with standard deviations (n = 3). K_{pdms-w} , from the regression
- 82 in ref.⁶, K_{ow} for PAHs from ref.² and for PCBs from ref.⁵

	Pore water concentration
	[pg/L]
Naphthalene	< LOD
Acenaphthene	12000 ± 2800
Fluorene	9200 ± 970
Phenanthrene	13000 ± 1700
Anthracene	15000 ± 1400
Fluoranthene	110000 ± 7900
Pyrene	77000 ± 4800
Benzo(a)anthracene	5900 ± 350
Chrysene	7100 ± 540
Benzo(b)fluoranthene	5600 ± 350
Benzo(k)fluoranthene	1600 ± 110
Benzo(a)pyrene	1800 ± 110
Indeno(1.2.3-cd)pyrene	410 ± 34
Dibenz(a,h)anthracene	79 ± 15
Benzo(g,h,i)perylene	630 ± 100
PCB 28	48 ± 4.1
PCB 52	45 ± 2.6
PCB 101	8.5 ± 0.57
PCB 118	1.1 ± 0.098
PCB 153	2.0 ± 0.24

	PCB 138	2.6 ± 0.25
	PCB 180	0.55 ± 0.064
83	< LOD, below the limit of detection	n.
84		
85		
00		

87 Table ESI 7 Polymer-water partition coefficients (K_{p-w}) compiled in ref.⁷ and the references therein, and

88 from other research studies. $A \pm$ indicates reported measure of variance. SD = Standard deviation. RSD =

89 *Relative standard deviation.* SE = Standard error. CI = Confidence interval. Min = Minimum. Max

90 =*Maximum.* -- = no data. Type of sampler, coating thickness and manufacturer.

Anthracene

$\log K_{p-w}$		±		ref
	3.20	± 10-15 % RSD	Fiber 7 µm PDMS Supelco	8
	3.46	± 10-15 % RSD	Fiber 100 µm PDMS Supelco	8
	4.38		Fiber 7 µm PDMS Supelco	9
	4.31		Fiber 100 µm PDMS Supelco	9
			Fiber 28.5 µm PDMS Poly Micro	10
	3.82	± 0.03 SD	Industries	
	4.12		Fiber 100 µm PDMS Supleco	11
	4.19	± 0.08 SD	Fiber 10 µm PDMS Fiber guide	12
		3.88, 3.98 (min,	Sheet 1 mm PDMS Specialty	
	3.93	max)	Silicone Products	13
		3.88, 4.06 (min,	Sheet 1 mm PDMS Specialty	
	3.98	max)	Silicone Products	13
	4.17	± 9-30 % RSD	Fiber 7 µm PDMS Supelco	14
			Sheet 0.4 mm silicon rubber	
	4.08	$\pm 0.05 95\%$ CI	Silastic A Dow Corning	15
	2.02		Sheet 0.5 mm silicon rubber SR	15
	3.92	$\pm 0.0595\%$ CI	Batch U Vizo Zeewolde	15
			Sheet 0.5 mm silicon rubber SK-	
	1 18	+0.03.95% CI	products	15
	4 .10	± 0.05 7570 CI	Sheet 0.5 mm silicon rubber SR-	
			Red I-flex Industrial rubber	
	3.91	$\pm 0.04 95\%$ CI	products	15
			Sheet 0.5 mm silicon rubber	
	4.21	± 0.03 95% CI	AlteSil Altecweb	15

4.20	± 0.03 95% CI	Sheet 0.5 mm silicon rubber AlteSil Altecweb	15
4.21	± 0.04 95% CI	Sheet 0.5 mm silicon rubber AlteSil Altecweb	15
4.09	± 0.12 SE	Casted vial PDMS MDX4-4210 Dow corning	16

Pyrene				
$\log K_{p-w}$		±		ref
	3.72	± 10-15 % RSD	Fiber 7 µm PDMS Supelco	8
	3.79	± 10-15 % RSD	Fiber 100 µm PDMS Supelco	8
	4.68		Fiber 7 µm PDMS Supelco	9
	4.49		Fiber 100 µm PDMS Supelco Fiber 28.5 µm PDMS Poly Micro	9
	4.25	± 0.01 SD	Industries	10
	4.4		Fiber 100 µm PDMS Supleco	11
	4.73	± 0.06 SD	Fiber 10 µm PDMS Fiberguide	12
	4 27	4.24, 4.29 (min, max)	Sheet 1 mm PDMS Specialty Silicone Products	13
	1.27	4.26, 4.45 (min,	Sheet 1 mm PDMS Specialty	13
	4.36	max)	Silicone Products	
	4.63	± 9-30 % RSD	Fiber 7 µm PDMS Supelco	14
	4 36	± 0.031	Fiber 28.5 µm PDMS (Poly Micro Industries ?)	17
	1.50	- 0.051	Fiber 28.5 um PDMS Poly Micro	
	4.22	± 0.05 SD	Industries	18
			Sheet 0.4 mm silicon rubber	
	4.56	± 0.07 95% CI	Silastic A Dow Corning	15
			Sheet 0.5 mm silicon rubber SR	
	4.38	$\pm 0.08 95\%$ CI	Batch 0 Vizo Zeewolde	15
			Sheet 0.5 mm silicon rubber SR-	
	1 6 1	1 0 02 050/ CI	Red J-flex Industrial rubber	15
	4.04	$\pm 0.0395\%$ CI	Sheet 0.5 mm silicon rubber SP	10
			Red I-fley Industrial rubber	
	4 38	± 0.04 95% CI	products	15
		0.01.9070.01	Sheet 0.5 mm silicon rubber	
	4.69	$\pm 0.06 95\%$ CI	AlteSil Altecweb	15
			Sheet 0.5 mm silicon rubber	
	4.67	± 0.04 95% CI	AlteSil Altecweb	15
			Sheet 0.5 mm silicon rubber	
	4.67	$\pm 0.04 95\%$ CI	AlteSil Altecweb	15
	4 77		Casted vial PDMS MDX4-4210	16
	4.77	± 0.06 SE	Dow corning	10

Benzo(a)pyrene

±

$\log K_{p-w}$

4.66 \pm 10-15 % RSD Fiber 7 μ m PDMS Supelco

ref 8

5.27		Fiber 7 µm PDMS Supelco	9
4.99		Fiber 100 μm PDMS Supelco Fiber 28.5 μm PDMS Poly Micro	9
5.18	± 0.02 SD	Industries	10
5.22	± 0.15 SD	Fiber 10 µm PDMS Fiberguide	12
	5.26, 5.44 (min,	Sheet 1 mm PDMS Specialty	
5.36	max)	Silicone Products	13
	4.98, 5.18 (min,	Sheet 1 mm PDMS Specialty	12
5.09	max)	Silicone Products	13
5.19	± 9-30 % RSD	Fiber 7 µm PDMS Supelco	14
4 50		Fiber 28.5 µm PDMS Poly Micro	10
4.59	± 0.05 SD	Industries	18
6.06	± 0.11 SD	Fiber 7 µm PDMS Supelco	19
6.06	± 0.15 SD	Fiber 30 µm PDMS Supelco	19
		Sheet 0.4 mm silicon rubber	
5.55	± 0.11 95% CI	Silastic A Dow Corning	15
5.00		Sheet 0.5 mm silicon rubber SR	15
5.22	$\pm 0.0695\%$ CI	Batch U Vizo Zeewolde	15
		Sheet 0.5 mm silicon rubber SR-	15
5 65	+ 0.05.95% CI	products	
5.05	± 0.05 9570 CI	Sheet 0.5 mm silicon rubber SR-	15
		Red I-flex Industrial rubber	
5.22	± 0.04 95% CI	products	
		Sheet 0.5 mm silicon rubber	15
5.71	$\pm 0.05 95\%$ CI	AlteSil Altecweb	
		Sheet 0.5 mm silicon rubber	15
5.7	± 0.03 95% CI	AlteSil Altecweb	
		Sheet 0.5 mm silicon rubber	15
5.67	$\pm 0.05 95\%$ CI	AlteSil Altecweb	
		Casted vial PDMS MDX4-4210	17
5.66	$\pm 0.15 \text{ SE}$	Dow corning	10

PCB 28

$\log K_{p-w}$		±		ref
	4.65	± 10-15 % RSD	Fiber 7 µm PDMS Supelco	8
			Fiber 100 µm PDMS Poly Micro	
	5.27	(0.06) = SD	Industries	20
			Fiber 30 µm PDMS Poly Micro	
	5.34	± 0.07 SD	Industries	20
			Fiber 7 µm PDMS Poly Micro	
	5.24	± 0.04 SD	Industries	20
	5.44	(0.05) SD	Sheet 500 µm PDMS Altecweb	20
	5.47	(0.21) SD	Fiber 7µm PDMS Supelco	21
	5.18	(0.11) SD	Fiber 100 µm PDMS Supelco	21
	4.59		PDMS trap Restek	22
	4.67		PDMS trap Restek	22
	5.36	$\pm 0.05 \text{ SE}$	Fiber 28.5 µm PDMS Poly Micro	23

		Industries	
		Sheet 0.4 mm silicon rubber	15
5.42	± 0.04 95% CI	Silastic A Dow Corning	
		Sheet 0.5 mm silicon rubber SR	15
5.23	± 0.07 95% CI	Batch 0 Vizo Zeewolde	
		Sheet 0.5 mm silicon rubber SR-	15
		Red J-flex Industrial rubber	
5.5	± 0.06 95% CI	products	
		Sheet 0.5 mm silicon rubber SR-	15
		Red J-flex Industrial rubber	
5.23	$\pm 0.06 95\%$ CI	products	16
		Sheet 0.5 mm silicon rubber	15
5.54	$\pm 0.0695\%$ CI	AlteSil Altecweb	15
5 5 2		Sheet 0.5 mm silicon rubber	15
5.53	$\pm 0.04 95\%$ CI	AlteSil Altecweb	15
5 5 2	1 0 05 050/ CI	Sheet 0.5 mm silicon rubber	15
5.52	$\pm 0.0595\%$ CI	AlleSII Allecwed	
5 17		Fiber Co	24
3.17		Fiber Co	21

PCB 52

log K _{p-w}		±		ref
	4.98	± 10-15 % RSD	Fiber 7 µm PDMS	8
			Fiber 100 µm PDMS Poly Micro	
	5.60	± 0.05 SD	Industries	20
			Fiber 30 µm PDMS Poly Micro	20
	5.65	± 0.07 SD	Industries	
			Fiber 7 µm PDMS Poly Micro	20
	5.58	± 0.05 SD	Industries	-
	5.74	± 0.05 SD	Sheet 500 µm PDMS Altecweb	20
	5.11		PDMS trap Restek	22
	5.45		PDMS trap Restek	22
			10 µm-thick PDMS coating	
	5.37	$\pm 0.05 \text{ SE}$	(Fiberguide industry)	25
	5.38		Fiber 15 µm PDMS Fiberguide	26
	5.66	± 0.19 SD	Fiber 7 µm PDMS Supelco	19
	5.71	± 0.03 SD	Fiber 30 µm PDMS Supelco	19
			Fiber 28.5 µm PDMS Poly Micro	
	5.59	$\pm 0.02 \text{ SE}$	Industries	23
			Sheet 0.4 mm silicon rubber	
	5.72	± 0.05 95% CI	Silastic A Dow Corning	15
			Sheet 0.5 mm silicon rubber SR	15
	5.54	± 0.08 95% CI	Batch 0 Vizo, Zeewolde,	
			Sheet 0.5 mm silicon rubber SR-	15
			Red J-flex Industrial rubber	
	5.77	$\pm 0.07 95\%$ CI	products	15
			Sheet 0.5 mm silicon rubber SR-	15
	A		Ked J-flex Industrial rubber	
	5.54	± 0.06 95% CI	products	

99 Figure ESI 1. Linear regression of the mass of PCBs quantified in extracts versus the mass of polymer in

100 the coated jar, determined after 3 weeks of equilibration time. Trend lines are forced through origin.

101 Error bars represent the standard deviations (n = 3). R^2 values were not included in the figure if they 102 were negative.

103

104

105 Text ESI1. Chemicals and materials

106 Acetone (Merck, SE), dimethylformamide (VWR chemicals, SE), ethyl acetate (VWR chemicals, SE),

107 methanol (Merck, SE), *n*-hexane (Merck, SE) and *n*-pentane (VWR chemicals, SE) were of HPLC grade.

108 Silica (SiO₂) gel 60 (Merck, SE) and sodium azide were purchased from VWR chemicals, SE. Ethanol

109 (99.7 %) was purchased from Solveco, SE. Stable isotope-labeled (${}^{13}C_{12}$; IUPAC # 28, 53, 52, 101, 118,

110 138, 153 and 180) PCBs (Wellington Laboratories, Guelph, Canada) were purchased from Greyhound

111 Chromatography and Allied Chemicals (Birkenhead, UK); PCB 53 and native PAHs (naphthalene,

112 acenaphthene, acenaphthylene, fluorene, anthracene, phenanthrene, fluoranthene, pyrene,

113 benz[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, indeno[1,2,3-

114 cd]pyrene, dibenz[a,h]anthracene, benzo[g,h,i]perylene) were purchased from Accustandard (New Haven,

115 CT, USA). Deuterated (d₈-d₁₂) PAHs (same congeners as the native PAHs, except acenapthylene) and

116 native PCBs (IUPAC # 28, 53, 52, 101, 118, 138, 153 and 180) were purchased from Larodan Fine

117 Chemicals AB (Limhamn, SE). Triclosan (Irgasan DP300) was a gift from Ciba-Geigy (Novartis) and

118 ¹³C₆-triclosan purchased from ALSACHIM. γ-HCH was purchased from Dr. Ehrenstorfer (Augsburg,

119 DE). 4-monochlorophenol, 2,6-dichlorophenolic and 3,5-dichlorophenol were found stored at the

120 Department of Environmental Science and Analytical Chemistry (ACES, Stockholm University). Their

121 concentrations were checked before use. Dow Corning® 1-2577 conformal coating was used for the

122 passive sampling jars. The 180 mL amber glass jars were purchased from Apodan Nordic Pharma Packing

123 A/S, DK and lids from Nordic Pack, SE. The biomedical grade elastomer Dow Corning® Silastic ®

MDX4-4210 was cast in passive dosing vials used for testing of the loading efficiency, determination of
the PDMS-water partition coefficients (K_{pdms-w}), and in the cell viability test. The 1.5 mL vials used in the
cell viability test were purchased from Technolab, SE. TO-PRO-1 iodide was purchased from Thermo
Fisher Scientific, SE. 1.5 mL Eppendorf tubes were from Sarstedt, DE.

129 Text ESI2. Study site and sediment sampling

Sediment (0-20 cm) for the transfer of an environmental mixture of chemicals in the bioassay was collected in the Ålöfjärden Bay, located ca 100 km south of Stockholm (the site is described in more detail in²⁷), using a van Veen grab sampler. Concentrations of the legacy contaminants ΣPAH_{15} and ΣPCB_7 in the sediment, analyzed as part of a separate study (Mustajärvi et al.) were 16 µg g⁻¹ DW and 50 ng g⁻¹ DW, respectively²⁷. Pore water concentrations, determined with 17 µm thin polyoxymethylene passive samplers (POM-17), were 280 ng L⁻¹ for Σ PAH₁₅ and 0.22 ng L⁻¹ for Σ PCB₇²⁷. The water content in the sediment, determined in a pre-study, was 70 %. Sediment (0-20 cm) for method development was retrieved from a central area in Stockholm City, where high levels of ΣPAH_{20} of ca 45 µg g⁻¹ DW²⁸ and \sum PCB₇ of ca. 300 ng g⁻¹ DW²⁹ had been measured in the sediment. The latter sediment was used in an initial test to validate the equilibrium partitioning between the sediment and the sampling polymer of different thicknesses.

References

155	1.	C. Hansch, A. Leo and D. Hoekman, Exploring QSAR - Hydrophobic, Electronic, and Steric
156	-	Constants, American Chemical Society Washington, DC, 1995.
157	2.	YG. Ma, Y. D. Lei, H. Xiao, F. Wania and WH. Wang, J. Chem. Eng. Data, 2010, 55 , 819-825.
158 159	3.	M. Allmyr, M. S. McLachlan, G. Sandborgh-Englund and M. Adolfsson-Erici, Anal. Chem., 2006, 78 , 6542-6546.
160	4.	HSDB, Journal, 2017.
161	5.	U. Schenker, M. MacLeod, M. Scheringer and K. Hungerbühler, Environ. Sci. Technol., 2005, 39,
162		8434-8441.
163	6.	U. Ghosh, S. K. Driscoll, R. M. Burgess, M. T. Jonker, D. Reible, F. Gobas, Y. Choi, S. E. Apitz, K. A.
164		Maruya, W. R. Gala, M. Mortimer and C. Beegan, Integr. Environ. Assess. Manag., 2014, 10, 210-
165		223.
166	7.	E. L. DiFilippo and R. P. Eganhouse, Environ. Sci. Technol., 2010, 44, 6917-6925.
167	8.	A. Paschke and P. Popp, <i>J. Chromatogr. A</i> , 2003, 999 , 35-42.
168	9.	B. Shurmer and J. Pawliszyn, Anal. Chem., 2000, 72 , 3660-3664.
169	10.	M. T. O. Jonker and B. Muijs, Chemosphere, 2010, 80 , 223-227.
170	11.	G. Ouyang, J. Cai, X. Zhang, H. Li and J. Pawliszyn, <i>J. Sep. Sci.</i> , 2008, 31 , 1167-1172.
171	12.	G. Witt, G. A. Liehr, D. Borck and P. Mayer, Chemosphere, 2009, 74, 522-529.
172	13.	JH. Kwon, T. Wuethrich, P. Mayer and B. I. Escher, Anal. Chem., 2007, 79 , 6816-6822.
173	14.	J. Poerschmann, T. Górecki and FD. Kopinke, Environ. Sci. Technol., 2000, 34, 3824-3830.
174	15.	F. Smedes, R. W. Geertsma, T. v. d. Zande and K. Booij, Environ. Sci. Technol., 2009, 43, 7047-
175		7054.
176	16.	K. E. Smith, N. Dom, R. Blust and P. Mayer, Aquat. Toxicol., 2010, 98, 15-24.
177	17.	J. J. H. Haftka, J. R. Parsons, H. A. J. Govers and J. J. Ortega-Calvo, Environ. Toxicol. Chem., 2008,
178		27 , 1526-1532.
179	18.	T. L. ter Laak, M. Durjava, J. Struijs and J. L. Hermens, <i>Environ. Sci. Technol.</i> , 2005, 39 , 3736-3742.
180	19.	K. A. Maruya, E. Y. Zeng, D. Tsukada and S. M. Bay, <i>Environ. Toxicol. Chem.</i> , 2009, 28 , 733-740.
181	20.	T. L. ter Laak, F. J. Busser and J. L. Hermens, <i>Anal. Chem.</i> , 2008, 80 , 3859-3866.
182	21.	ZY. Yang, E. Y. Zeng, H. Xia, JZ. Wang, BX. Mai and K. A. Maruya, J. Chromatogr. A, 2006,
183		1116 , 240-247.
184	22.	E. Baltussen, P. Sandra, F. David, HG. Janssen and C. Cramers, Anal. Chem., 1999, 71, 5213-
185		5216.
186	23.	M. K. Durjava, T. L. Ter Laak, J. L. Hermens and J. Struijs, <i>Chemosphere</i> , 2007, 67 , 990-997.
187	24.	MK. Hsieh, CT. Fu and Sc. Wu, <i>Environ. Sci. Technol.</i> , 2011, 45 , 7785-7791.
188	25.	A. R. Schneider, A. Paolicchi and J. E. Baker, <i>Int. J. Environ. Anal. Chem.</i> , 2006, 86 , 789-803.
189	26.	P. Mayer, W. H. Vaes, F. Wijnker, K. C. Legierse, R. Kraaij, J. Tolls and J. L. Hermens, <i>Environ. Sci.</i>
190		Technol., 2000, 34 , 5177-5183.
191	27.	L. Mustajärvi, E. Eek, G. Cornelissen, AK. Eriksson-Wilkund, E. Undeman and A. Sobek, <i>Environ</i> .
192		Pollut., submitted.
193	28.	M. Mandalakis, O. Gustafsson, C. M. Reddy and L. Xu, Environ. Sci. Technol., 2004, 38, 5344-5349.
194	29.	A. Jahnke, P. Mayer and M. S. McLachlan, <i>Environ. Sci. Technol.</i> , 2012, 46 , 10114-10122.