Electronic Supplementary Information for: Estimating probability of illness due to swimming in recreational water with a mixture of human- and gull-associated microbial source tracking markers

October 18, 2017

Kendra I. Brown^a, Katherine E. Graham^a, Jeffrey A. Soller^b, Alexandria B. Boehm^{a*}

^a Department of Civil and Environmental Engineering, Environmental Engineering and Science,

Stanford University, 94305-4020, USA. Fax: (650) 725-3164; Tel: (650) 724-9128; E-mail: aboehm@stanford.edu
^b Soller Environmental, LLC, 3022 King St, Berkeley, CA 94703, USA.

1 Contents

² Figures:

- ³ Figure S1: $P_{ill}^{effluent}$ due to Cryptosporidium (Page 3)
- ⁴ Figure S2: $P_{ill}^{effluent}$ due to Giardia (Page 4)
- ⁵ Figure S3: $P_{ill}^{effluent}$ due to norovirus (Page 5)
- ⁶ Figure S4: Sensitivity analysis of dose-dependent versus constant $P^{sewage}_{ill|inf,rp}$ (Page 6)
- 7 Figure S5: Sensitivity analysis of dose-dependent versus constant $P_{ill|inf,rp}^{gull}$ (Page 7)
- $_{*}$ Figure S6: Median $P_{ill,sum}$ associated with a mixture of human and gull feces, generated with
- 9 beta-Poisson $P_{inf,rp}$ and constant $P_{ill|inf}$. (Page 8)

10

11 Tables:

- $_{12}$ Table S1: Primer and probe sequences for HF183 assay (Page 9)
- ¹³ Table S2: HF183 assay standard curve descriptors (Page 10)
- ¹⁴ Table S3: Sensitivity analysis on input parameters to predict dose (Page 11)

15

Figure S1: Box and whisker plots of $P_{ill}^{effluent}$ due to *Cryptosporidium* versus $\log_{10}C_{HF}$ from disinfected effluent. See Figure 2 for description. See main text for abbreviation descriptions.

Figure S2: Box and whisker plots of $P_{ill}^{effluent}$ due to *Giardia* versus $\log_{10}C_{HF}$ from disinfected effluent. See Figure 2 for description. See main text for abbreviation descriptions.

Figure S3: Box and whisker plots of $P_{ill}^{effluent}$ due to norovirus versus $\log_{10}C_{HF}$ from disinfected effluent. See Figure 2 for description. See main text for abbreviation descriptions.

Figure S4: Median $P_{ill,sum}^{sewage}$ at different concentrations of the HF183 human marker (C_{HF}^{sewage}) in recreational water. $P_{ill,sum}$ is predicted from dose-dependent versus constant $P_{ill|inf,rp}$ for Salmonella and Campylobacter. Each $P_{ill|inf,rp}$ is paired with a specific $P_{inf,rp}$; constant $P_{ill|inf,rp}$ with a beta-Poisson $P_{inf,rp}$, and dose-dependent $P_{ill|inf,rp}$ with a beta-binomial $P_{inf,rp}$ (Table 2). The red line indicates the threshold of 3 cases of illnesses/100 swimmers.

Figure S5: Median $P_{ill,sum}^{gull}$ at different concentrations of the CAT gull marker (C_{CAT}) in recreational water. $P_{ill,sum}$ is predicted from dose-dependent versus constant $P_{ill|inf,rp}$ for Salmonella and Campylobacter. Each $P_{ill|inf,rp}$ is paired with a specific $P_{inf,rp}$; constant $P_{ill|inf,rp}$ with a beta-Poisson $P_{inf,rp}$, and dose-dependent $P_{ill|inf,rp}$ with a beta-binomial $P_{inf,rp}$ (Table 2). The red line indicates the threshold of 3 cases of illnesses/100 swimmers.

Figure S6: Median $P_{ill,sum}$ at different mixed concentrations of the HF183 human marker (C_{HF}^{sewage}) and the gull marker (C_{CAT}) in recreational water. Data in this plot were generated with a QMRA using the beta-Poisson dose response curves $(P_{inf,rp})$ and constant $P_{ill|inf}$ given in Table 2.

Table S1: Primer and probe sequences used to target segments of human $Bacteroides 16{\rm S}$ rRNA by the HF183 qPCR assay.

Primer/	Sequence $(5' \text{ to } 3')$	Reference		
Probe				
HF183	ATCATGAGTTCACATGTCCG	Bernhard and Field $^{\rm 1}$		
BacR287	CTTCCTCTCAGAACCCCTATCC	Green et al. 2		
$\mathrm{BacP234}\ \mathrm{MGB}$	[6FAM]-CTAATGGAACGCATCCC-[MGB]	Green et al. 2		

Table S2: HF183 as say standard curve parameters. As say performance was judged based on efficiency, with efficiency between 0.90 and 1.10 considered acceptable.

Slope	Intercept	R^2	Efficiency
-3.5	37.9	0.99	0.94

_

Table S3: Sensitivity analysis of input variables for the effluent scenario. F_{HF} : concentration of HF in effluent [copies/ml]; L_{noro} : removal of norovirus during wastewater treatment; V: volume of seawater ingested [ml]; R_{noro} : concentration of norovirus in sewage [genomes/L]; $R_{Giardia}$: concentration of *Giardia* in wastewater effluent [CFU/L]; R_{Crypto} : concentration of *Cryptosporidium* in wastewater effluent [CFU/L]; $P_{ill|inf,noro}$: probability of illness given infection with norovirus; $P_{ill|inf,Crypto}$: probability of illness given infection with *Cryptosporidium*; $P_{ill|inf,Giardia}$: probability of illness given infection with *Giardia*.

	Input Value			p75:p25					
Variable	p25	p50	p75	10^{0}	10^{1}	10^{2}	10^{3}	10^{4}	10^{5}
				(copies $HF/100$ ml ambient seawater)					
R _{noro}	4.9×10^3	$5.0 imes 10^4$	5.1×10^5	104	102	89.5	40.2	7.21	1.84
F_{HF}	1.3×10^2	$1.1 imes 10^3$	$1.2 imes 10^4$	95.4	94.2	83.9	40.4	7.6	2.0
L_{noro}	9.4×10^{1}	7.1×10^2	5.3×10^3	55.9	55.3	4.57	25.9	5.39	1.62
$P_{ill inf,noro}$	0.425	0.55	0.675	1.59	1.59	1.59	1.59	1.59	1.58
V	13.1	14.0	15.0	1.15	1.15	1.15	1.13	1.06	1.01
$R_{Giardia}$	0.531	5.62	59.6	1.0	1.0	1.0	1.0	1.01	1.05
R_{Crypto}	0.266	1.41	7.50	1.0	1.0	1.0	1.0	1.0	1.03
$P_{ill inf,Crypto}$	0.325	0.45	0.575	1.0	1.0	1.0	1.0	1.0	1.0
$P_{ill inf,Giardia}$	0.325	0.45	0.575	1.0	1.0	1.0	1.0	1.0	1.0

16 References

- [1] Bernhard, A. E.; Field, K. G. A PCR assay to discriminate human and ruminant feces on
 the basis of host differences in Bacteroides-Prevotella genes encoding 16S rRNA. Applied and
 Environmental Microbiology 2000, 66, 4571–4574.
- [2] Green, H. C.; Haugland, R. A.; Varma, M.; Millen, H. T.; Borchardt, M. A.; Field, K. G.;
 Walters, W. A.; Knight, R.; Sivaganesan, M.; Kelty, C. A.; Shanks, O. C. Improved HF183
- quantitative real-time PCR assay for characterization of human fecal pollution in ambient sur-
- face water samples. Applied and Environmental Microbiology **2014**, 80, 3086–3094.