Electronic Supplementary Material (ESI) for Environmental Science: Processes & Impacts. This journal is © The Royal Society of Chemistry 2017

1 Electronic Supporting Information

- 2 Effect of Secondary Organic Aerosol from Isoprene-Derived Hydroxyhydroperoxides on
- 3 the Expression of Oxidative Stress Response Genes in Human Bronchial Epithelial Cells
- 5 Maiko Arashiro^{1,a}, Ying-Hsuan Lin^{1,b}, Zhenfa Zhang¹, Kenneth G. Sexton¹, Avram Gold¹, Ilona
- 6 Jaspers^{1,2}, Rebecca C. Fry¹, Jason D. Surratt^{1,*}
- 7 ¹Department of Environmental Sciences and Engineering, Gillings School of Global Public
- 8 Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- 9 ²Department of Pediatrics, School of Medicine, The University of North Carolina at Chapel Hill,
- 10 Chapel Hill, North Carolina, USA
- 11 ^aCurrent address: Department of Environmental Studies, Dickinson College, Carlisle,
- 12 Pennsylvania 17013, USA
- 13 bCurrent address: Department of Environmental Sciences, Environmental Toxicology Graduate
- 14 Program, University of California, Riverside, California 92521, USA
- 16 *To whom correspondence should be addressed.
- 17 Tel: (919)-966-0470. Fax: (919)-966-7911. Email: surratt@unc.edu (J.D.S.)
- 20 Generation and Chemical Characterization of Isoprene-Derived SOA and ISOPOOH-Derived
- 21 *SOA*

4

15

18

19

- Isoprene-derived SOA used for cellular exposure were generated by photochemically
- 23 oxidizing a mixture of acidified sulfate seed aerosol, isoprene, and NO injected into an outdoor
- 24 smog chamber facility. The generation and chemical characterization of the isoprene-derived
- 25 SOA used for the resuspension exposures in this study has been described in detail as part of a
- 26 previous study.¹
- 27 ISOPOOH-derived SOA were generated in a 10-m³ flexible Teflon indoor chamber at the
- 28 University of North Carolina, as recently described by Riva et al.² Experiments were performed
- 29 at room temperature (25°C) under dark and low relative humidity (RH) (<5%) conditions. Prior
- 30 to each experiment, the chamber was flushed for at least 24 hrs to replace at least five volumes of
- 31 chamber air to ensure particle-free conditions and O₃ and VOC concentrations were below
- 32 detection limits. Aerosol size distributions were measured continuously using a differential

mobility analyzer (DMA; BMI model 2002) coupled to a mixing condensation particle counter (MCPC; BMI model 1710). The O₃ concentration was monitored over the course of the experiment using a UV photometric analyzer (Model 49P. Thermo-Environmental). Temperature and RH inside the chamber were continuously monitored using an OM-62 temperature RH data logger (OMEGA Engineering, Inc.).

38 A neutral ammonium sulfate ((NH₄)₂SO₄) seed aerosol solution containing 0.06 M (NH₄)₂SO₄ was atomized into the chamber until the total aerosol mass concentration in the 39 chamber was ~ 80 μg m⁻³. Because 90% of ISOPOOH + OH yields IEPOX, neutral (NH₄)₂SO₄ 40 41 seed was used to prevent the reactive uptake of IEPOX and allow the 10% of hydroperoxides to condense onto pre-existing aerosol.³ Following aerosol injection, 300 ppb of 1,2-ISOPOOH, 42 synthesized in house as described by Riva et al., 2 was injected into the chamber by passing high-43 purity N_2 gas through a manifold heated to ~70°C at 2 L min⁻¹ for 10 mins then at 5 L min⁻¹ for 44 80 mins. O₃ was introduced into the chamber using an O₃ generator (model L21, Pacific ozone) 45 followed by a continuous injection of tetramethylethylene (TME). The ozonolysyis of TME 46 formed the OH radicals needed for the oxidation of ISOPOOH. A summary of the experimental 47 48 conditions is given in Table S1. Neutral (NH₄)₂SO₄ seed aerosol only experiments served as controls. Following the 1.5-hr injection of TME, aerosol samples were collected onto Teflon membrane filters (47 mm diameter, 1.0 µm pore size; Pall Life Science). Exact mass loadings on 50 51 the filters were calculated from total air volume sampled and average mass concentrations of aerosol during the sampling period. A density correction of 1.6 g cm⁻³ ⁴ and 1.25 g cm⁻³ ⁵ was 52 applied to convert the measured volume concentrations to mass concentrations for the (NH₄)₂SO₄ 53 seed and SOA growth. 54

55 DTT methods

Description of the DTT assay has been previously described in detail. 6-7 Briefly, DTT 56 and DTNB stock solutions were made by adding DTT standard (powder form) (Sigma-Aldrich) 57 or DTNB standard (Sigma-Aldrich) to an aqueous buffer solution containing 0.05 mol L⁻¹ 58 potassium phosphate monobasic-sodium hydroxide (KH₂PO₄, pH 7.4, Fisher Scientific) and 1 59 mM ethylenediaminetetraacetic acid (EDTA, Sigma Aldrich). A stock solution of 1,4-60 naphthoquinone (1,4-NQ) was made by dissolving 0.5 mg of 1,4-NQ in 0.5 mL dimethyl 61 sulfoxide (DMSO). Volumes of stock solutions were added to additional aqueous buffer to make 62 working solutions. 63

64 ISOPOOH-derived SOA extracts were prepared by sonicating chamber filters in highpurity methanol (LC/MS CHROMASOLV, Sigma-Aldrich). Three separate filters were used 65 (n=3) and extracts were concentrated by drying under a gentle stream of nitrogen. Each 66 ISOPOOH-derived SOA extract was combined with buffer and 0.05 mM DTT working solution 67 68 and incubated at 37°C for 30 min. Reactions were quenched with the addition of a 1 mM DTNB working solution. A DTT calibration curve was generated by varying DTT volumes with buffer 69 solution. A calibration curve of 1,4-NQ was generated by varying volumes of 1,4-NQ with a set 70 71 amount of DTT. The consumption of DTT was measured by the absorbance of 5-thio-2nitrobenzoic acid (TNB), formed by the oxidation of residual DTT with DTNB, at 412 nm using 72 a UV-Visible Spectrophotometer (Hitachi U-3300 dual beam spectrophotometer) 7-8. Dilution 73 74 effects were taken into account by correcting the absorbance measurements for sample volume.

ROS generation potential was expressed as DTT activity (nmol of DTT consumed/min/µg sample) and the normalized index of oxidant generation (NIOG) for comparison with previously published studies ⁷. As demonstrated by Rattanavaraha et al. ⁷, an index of oxidant generation (IOG) was calculated according to the following equation ⁷:

$$IOG = \frac{Abs_0 - Abs'}{Abs_0} \times \frac{100}{T \times M}$$

- where T is reaction time (min), M is sample mass (µg), Abs₀ and Abs' are initial absorbance and
- absorbance at time T, respectively. The NIOG calculation normalizes activity with respect to a
- 1,4-NQ standard as follows: 82

$$NIOG_{sample} = \frac{IOG_{sample}}{IOG_{1,4-NQ}}$$

83

86

92

Table S1. Summary of experimental condition for ISOPOOH oxidation experiments and control 84 85 experiments.

Experiment	Precursor Concentration (ppb)	Target O ₃ (ppm)	TME	Initial Seed (μg m ⁻³)	SOA Growth (µg m ⁻³)	sampling volume (m³)	mass collected (µg)
ISOPOOH	300	1.5	yes	76.45	47.76	2.80	133.71
ISOPOOH	300	1.5	yes	76.99	52.44	2.66	139.76
ISOPOOH	300	1.5	yes	77.28	54.34	3.04	165.47
Seed only	-	-	no	587.54	-	0.45	267

87 88 89 Table S2. Gene symbols and full names of 84 oxidative stress-associated genes and

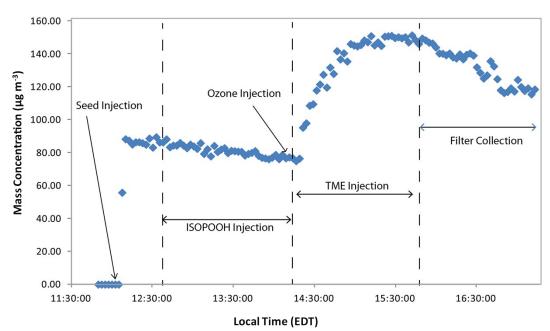
90 housekeeping genes included in RT² ProfilerTM PCR Array Human Oxidative Stress Pathway

Plus (PAHS-065Y). 91

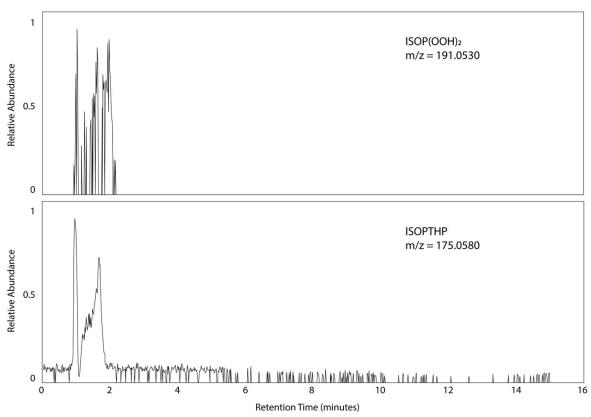
#	Gene Symbol	Full Name
1	ALB	Albumin
2	ALOX12	Arachidonate 12-lipoxygenase
3	AOX1	Aldehyde oxidase 1
4	APOE	Apolipoprotein E
5	ATOX1	ATX1 antioxidant protein 1 homolog (yeast)
6	BNIP3	BCL2/adenovirus E1B 19kDa interacting protein 3
7	CAT	Catalase
8	CCL5	Chemokine (C-C motif) ligand 5
9	CCS	Copper chaperone for superoxide dismutase
10	CYBB	Cytochrome b-245, beta polypeptide
11	CYGB	Cytoglobin
12	DHCR24	24-dehydrocholesterol reductase
13	DUOX1	Dual oxidase 1
14	DUOX2	Dual oxidase 2

15	DUSP1	Dual specificity phosphatase 1		
16	EPHX2	Epoxide hydrolase 2, cytoplasmic		
17	EPX	Eosinophil peroxidase		
18	FOXM1	Forkhead box M1		
19	FTH1	Ferritin, heavy polypeptide 1		
20	GCLC	Glutamate-cysteine ligase, catalytic subunit		
21	GPX1	Glutathione peroxidase 1		
22	GPX2	Glutathione peroxidase 2 (gastrointestinal)		
23	GPX3	Glutathione peroxidase 3 (plasma)		
24	GPX4	Glutathione peroxidase 4 (phospholipid hydroperoxidase)		
25	GPX5	Glutathione peroxidase 5 (epididymal androgen-related		
20	01110	protein)		
26	GSR	Glutathione reductase		
27	GSS	Glutathione synthetase		
28	GSTP1	Glutathione S-transferase pi 1		
29	GSTZ1	Glutathione transferase zeta 1		
30	HSPA1A	Heat shock 70kDa protein 1A		
31	KRT1	Keratin 1		
32	LPO	Lactoperoxidase		
33	MB	Myoglobin		
34	MBL2	Mannose-binding lectin (protein C) 2, soluble		
35	MPO	Myeloperoxidase		
36	MPV17	MpV17 mitochondrial inner membrane protein		
37	MSRA	Methionine sulfoxide reductase A		
38	MT3	Metallothionein 3		
39	NCF1	Neutrophil cytosolic factor 1		
40	NCF2	Neutrophil cytosolic factor 2		
41	NOS2	Nitric oxide synthase 2, inducible		
42	NOX4	NADPH oxidase 4		
43	NOX4	NADPH oxidase 4 NADPH oxidase, EF-hand calcium binding domain 5		
44	NUDT1	Nudix (nucleoside diphosphate linked moiety X)-type motif 1		
45	PDLIM1	PDZ and LIM domain 1		
46	PRDX1	Peroxiredoxin 1		
47	PRDX1	Peroxiredoxin 1 Peroxiredoxin 2		
48	PRDX3	Peroxiredoxin 2 Peroxiredoxin 3		
48	PRDX3	Peroxiredoxin 3 Peroxiredoxin 4		
50	PRDX5	Peroxiredoxin 5		
51	PRDX6	Peroxiredoxin 6		
52	PRNP	Prion protein		
53	PTGS1	Prostaglandin-endoperoxide synthase 1 (prostaglandin G/H		
<i>E 1</i>	DTCC2	synthase and cyclooxygenase)		
54	PTGS2	Prostaglandin-endoperoxide synthase 2 (prostaglandin G/H		
<i>F.F.</i>	DME7	synthase and cyclooxygenase)		
55	RNF7	Ring finger protein 7		
56	VIMP	Selenoprotein S		

57	SEPP1	Selenoprotein P, plasma, 1		
58	SFTPD	Surfactant protein D		
59	SIRT2	Sirtuin 2		
60	SOD1	Superoxide dismutase 1, soluble		
61	SOD2	Superoxide dismutase 2, mitochondrial		
62	SOD3	Superoxide dismutase 3, extracellular		
63	SQSTM1	Sequestosome 1		
64	SRXN1	Sulfiredoxin 1		
65	TPO	Thyroid peroxidase		
66	TTN	Titin		
67	TXNRD2	Thioredoxin reductase 2		
68	UCP2	Uncoupling protein 2 (mitochondrial, proton carrier)		
69	AKR1C2	Aldo-keto reductase family 1, member C2 (dihydrodiol		
		dehydrogenase 2; bile acid binding protein; 3-alpha		
		hydroxysteroid dehydrogenase, type III)		
70	BAG2	BCL2-associated athanogene 2		
71	FHL2	Four and a half LIM domains 2		
72	GCLM	Glutamate-cysteine ligase, modifier subunit		
73	GLA	Galactosidase, alpha		
74	HMOX1	Heme oxygenase (decycling) 1		
75	HSP90AA1	Heat shock protein 90kDa alpha (cytosolic), class A member 1		
76	LHPP	Phospholysine phosphohistidine inorganic pyrophosphate		
		phosphatase		
77	NCOA7	Nuclear receptor coactivator 7		
78	NQO1	NAD(P)H dehydrogenase, quinone 1		
79	PTGR1	Prostaglandin reductase 1		
80		Solute carrier family 7 (anionic amino acid transporter light		
	SLC7A11	chain, xc- system), member 11		
81	SPINK1	Serine peptidase inhibitor, Kazal type 1		
82	TRAPPC6A	Trafficking protein particle complex 6A		
83	TXN	Thioredoxin		
84	TXNRD1	Thioredoxin reductase 1		
	ACTB	Actin, beta		
TT1	B2M	Beta-2-microglobulin		
Housekeepin	GAPDH	Glyceraldehyde-3-phosphate dehydrogenase		
g Genes	HPRT1	Hypoxanthine phosphoribosyltransferase 1		
	RPLP0	Ribosomal protein, large, P0		


Gene	Fold		NRF2-associated	
Symbol	Regulation	p-value	Genes	<fdr< th=""></fdr<>
AKR1C2	20.21	0.000003		*
ALOX12	1.83	0.189227		
ATOXI	1.57	0.000203		*
BAG2	2.48	0.000181		*
BNIP3	1.50	0.015483		
DUOX2	1.69	0.013911		
DUSP1	10.01	0.000012		*
EPX	2.02	0.002065		
FHL2	1.93	0.000212		*
FTH1	6.71	0.000019	+	*
GCLC	5.45	0.000627	+	
GCLM	14.12	0.000008	+	*
GLA	4.28	0.000019		*
GPX2	4.99	0.004839	+	
GPX3	1.88	0.002074		
GSR	2.66	0.002702	+	
GSTP1	1.70	0.000867	+	
HMOX1	123.64	0.00002	+	*
HSP90AA1	3.01	0.000014		*
HSPA1A	14.03	0.000441		*
NCF1	2.85	0.04451		
NQO1	6.02	0.000002	+	*
PRDX1	3.82	0.000009	+	*
PRDX4	1.56	0.009166		
PRDX6	2.15	0.000045		*
PRNP	1.85	0.000066		*
PTGS1	1.87	0.011846		
PTGS2	3.02	0.001327		
<i>RNF7</i>	1.87	0.002062		
SLC7A11	9.54	0.000008		*
SOD1	2.50	0.000203	+	*
SOD2	3.05	0.000002	+	*
SOD3	1.96	0.001269	+	
SQSTM1	8.67	0.00001	+	*
SRXN1	8.52	0.000000		*
TXN	3.48	0.000078	+	*
TXNRD1	8.71	0.001145	+	

UCP2	2.44	0.01224		
_VIMP	3.60	0.000002		*
CAT	-1.78	0.005005	+	
MSRA	-2.13	0.000138		*


Table S4. List of genes identified with significant expression fold-changes (p<0.05) upon
 exposure to ISOPOOH-derived SOA constituents. False Discovery Rate (FDR) adjusted p-value:
 0.05/84=0.0005.

_	_	_
1	0	6

			NRF2-	
	Fold		associated	
Gene Name	Regulation	p-value	Genes	<fdr< th=""></fdr<>
AKR1C2	2.20	0.013377		
ATOX1	1.56	0.024189		
BAG2	2.00	0.00763		
CAT	1.58	0.006833	+	
DHCR24	1.58	0.001557		
FTH1	2.28	0.008796	+	
GCLC	2.59	0.003719	+	
GCLM	2.89	0.001271	+	
GLA	1.74	0.034903		
GPX1	1.54	0.014517		
GPX2	5.95	0.000725	+	
GPX3	1.87	0.000538		
GSR	1.69	0.027743	+	
GSTP1	1.63	0.041316	+	
HMOX1	2.00	0.016293	+	
HSP90AA1	2.09	0.000988		
HSPA1A	1.59	0.001239		
NQO1	4.96	0.003367	+	
\widetilde{PRDXI}	2.19	0.007017	+	
PRDX3	1.61	0.047334		
PRDX6	1.50	0.023451		
PTGS1	2.02	0.025923		
RNF7	1.78	0.040105		
SIRT2	1.64	0.000194		*
SLC7A11	3.43	0.000005		*
SQSTM1	2.36	0.000085	+	*
SRXN1	2.72	0.000015		*
TXN	2.23	0.016836	+	
TXNRD1	4.88	0.003985	+	
TXNRD2	1.79	0.000992		
VIMP	1.56	0.001192		
DUOXI	-2.01	0.011647		

Fig. S1. Time profile of measured aerosol mass concentrations during ISOPOOH oxidation experiments.

Fig. S2. UPLC/(+)ESI-HR-QTOFMS extracted ion chromatograms (EICs) at *m/z* 191.0530 and 175.0580 corresponding to ISOP(OOH)₂ and ISOPTHP SOA constituents, respectively. Filter

- 114 extracts were analyzed in positive ion mode which affects sensitivity but still shows the presence
- of hydroperoxides while not showing its large abundance.

116 References

- 117 1. Arashiro, M.; Lin, Y. H.; Sexton, K. G.; Zhang, Z.; Jaspers, I.; Fry, R. C.; Vizuete, W.
- 118 G.; Gold, A.; Surratt, J. D., In vitro exposure to isoprene-derived secondary organic aerosol by
- 119 direct deposition and its effects on COX-2 and IL-8 gene expression. Atmos. Chem. Phys. 2016,
- 120 16 (22), 14079-14090.
- 121 2. Riva, M.; Budisulistiorini, S. H.; Chen, Y.; Zhang, Z.; D'Ambro, E. L.; Zhang, X.; Gold,
- 122 A.; Turpin, B. J.; Thornton, J. A.; Canagaratna, M. R.; Surratt, J. D., Chemical Characterization
- 123 of Secondary Organic Aerosol from Oxidation of Isoprene Hydroxyhydroperoxides.
- 124 Environmental Science & Technology **2016**, *50* (18), 9889-9899.
- Berndt, T.; Herrmann, H.; Sipilä, M.; Kulmala, M., Highly Oxidized Second-Generation
- 126 Products from the Gas-Phase Reaction of OH Radicals with Isoprene. The Journal of Physical
- 127 *Chemistry A* **2016**.
- 128 4. Riedel, T. P.; Lin, Y. H.; Zhang, Z.; Chu, K.; Thornton, J. A.; Vizuete, W.; Gold, A.;
- 129 Surratt, J. D., Constraining condensed-phase formation kinetics of secondary organic aerosol
- components from isoprene epoxydiols. Atmos. Chem. Phys. 2016, 16 (3), 1245-1254.
- 131 5. Kroll, J. H.; Ng, N. L.; Murphy, S. M.; Flagan, R. C.; Seinfeld, J. H., Secondary organic
- 132 aerosol formation from isoprene photooxidation. Environmental Science & Technology 2006, 40
- 133 (6), 1869-1877.
- Kramer, A. J.; Rattanavaraha, W.; Zhang, Z.; Gold, A.; Surratt, J. D.; Lin, Y.-H.,
- 135 Assessing the oxidative potential of isoprene-derived epoxides and secondary organic aerosol.
- 136 Atmospheric Environment **2016**, 130, 211-218.
- 137 7. Rattanavaraha, W.; Rosen, E.; Zhang, H.; Li, Q.; Pantong, K.; Kamens, R. M., The
- 138 reactive oxidant potential of different types of aged atmospheric particles: An outdoor chamber
- 139 study. *Atmospheric Environment* **2011**, *45* (23), 3848-3855.
- 140 8. Li, O.; Wyatt, A.; Kamens, R. M., Oxidant generation and toxicity enhancement of aged-
- 141 diesel exhaust. Atmospheric Environment **2009**, 43 (5), 1037-1042.