Electronic Supplementary Material (ESI) for Environmental Science: Processes & Impacts. This journal is © The Royal Society of Chemistry 2018

Supplemental Information

Responses of Deposition and Bioaccumulation in the Great Lakes Region to Policy and Other Large-scale Drivers of Mercury Emissions

J. A. Perlinger,^a N. R. Urban,^a A. Giang^b, N. E. Selin,^b A. N. Hendricks,^a H. Zhang,^c A. Kumar,^c S. Wu,^c V. S. Gagnon,^d H. S. Gorman,^d E. S. Norman^e

 ^aCivil & Environmental Engineering Department, Michigan Technological University, Houghton, MI 49931
^bInstitute for Data, Systems, and Society and Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
^cGeological & Mining Engineering and Science Department, Michigan Technological University, Houghton, MI 49931
^dSocial Sciences Department, Michigan Technological University, Houghton, MI 49931
^eNative Environmental Science Department, Northwest Indian College, Bellingham, WA 98226

Table of Contents

FIGURE S1. ASPIRATIONAL SCENARIO TOTAL HG DEPOSITION CHANGE	. 2
FIGURE S2. MINIMAL REGULATION SCENARIO TOTAL HG DEPOSITION CHANGE	. 2
FIGURE S3. CLIMATE CHANGE SCENARIO TOTAL HG DEPOSITION CHANGE	. 2
FIGURE S4. LAND USE/LAND COVER TOTAL HG DEPOSITION CHANGE	.3
FIGURE S5. BIOMASS BURNING SCENARIO TOTAL HG DEPOSITION CHANGE.	.3
TABLE S1. SUMMARY OF LAKE CHARACTERISTICS AND PROCESS RATES IN HG LAKE MODE	L
	.4

Figure S1. Aspirational scenario total Hg deposition change. The panel on the left represents the aspirational policy benefit in $\Delta \mu g m^{-2} yr^{-1}$, while that on the right represents it as % change from the present.

Figure S2. Minimal regulation scenario total Hg deposition change. The panel on the left represents the aspirational policy benefit in $\Delta \mu g m^{-2} yr^{-1}$, while that on the right represents it as % change from the present.

Figure S3. Climate change scenario total Hg deposition change. The panel on the left represents the aspirational policy benefit in $\Delta \mu g m^{-2} yr^{-1}$, while that on the right represents it as % change from the present.

Figure S4. Land use/land cover total Hg deposition change. The panel on the left represents the aspirational policy benefit in $\Delta\mu g \text{ m}^{-2} \text{ yr}^{-1}$, while that on the right represents it as % change from the present.

Figure S5. Biomass burning scenario total Hg deposition change. The panel on the left represents the aspirational policy benefit in $\Delta\mu g \text{ m}^{-2} \text{ yr}^{-1}$, while that on the right represents it as % change from the present.

Parameter or Process	Value	Units
Lake Surface Area	9.7 x 10 ⁶	m^2
Volume of Lake	$1.4 \ge 10^8$	m ³
Mean Depth	15	m
Watershed Area	$1.9 \ge 10^8$	m^2
Wetland Area in the lake's	14	%
Watershed		
pH (Measured)	6.9	
DOC Concentration ^{a,b}	7.4	$mg L^{-1}$
Biotic Solids Concentration ^{a,b}	34	$mg L^{-1}$
Abiotic Solids Concentration	0.3	mg L ⁻¹
Lake Temperature ^{a,b}	1.2 - 18.1	°C
Burial Velocity ^a	0.0022	m yr ⁻¹
Resuspension Velocity ^a	0.0013	m yr ⁻¹
Settling Velocity ^a	330	m yr ⁻¹
Inflow ^b	$1.0 \ge 10^8$	$m^3 yr^{-1}$
Outflow ^{a,b}	9.9 x 10 ⁷	$m^3 yr^{-1}$
THg Concentration in	404	ppb Dry Wt
Sediments (Measured)		
THg Concentration in	0.8	ng L ⁻¹
Epilimnion (Mean Measured)		
THg Concentration in	0.6	ng L ⁻¹
Hypolimnion (Mean		
Measured)		
THg Wet Deposition	7.6	ng m ² yr ⁻¹
MeHg of THg in Wet	1.5	%
Deposition		

Table S1. Summary of lake characteristics and process rates in Hg lake model

^aCalculated values ^bVariables changing seasonally