Supporting Information

Manganese(IV) Oxide Amendments Reduce Methylmercury Concentrations in Sediment Porewater

Dimitri Vlassopoulos¹, Masa Kanematsu¹, Jessica Goin¹, Alexander Leven², Elizabeth Henry³, David Glaser⁴, Steven Brown⁵ and Peggy A. O'Day²

Figure S-1. Dissolved manganese concentrations of overlying water in sediment tank mesocosms over time (days since startup). Pore water sampling occurred at day 100.

Figure S-2. Dissolved iron concentrations of overlying water in sediment tank mesocosms over time (days since startup).

Figure S-3. Sulfate concentrations of overlying water in sediment tank mesocosms over time (days since startup).

Figure S-4. Sulfide concentrations of overlying water in sediment tank mesocosms over time (days since startup).

Figure S-5. pH of overlying water in sediment tank mesocosms over time (days since startup).

Figure S-6. Filtered mercury concentrations in sediment mesocosm porewaters and overlying water after 100 days (n=2).

Figure S-7. Carbon dioxide gas evolution during anaerobic incubation of unamended and manganese oxide amended sediment in microcosm experiments.