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CDI decontamination test

The electrosorption capacity of the CDI system was conducted in a continuously 

recycling system including a home-made single CDI unit, an electrical power supply, 

a conductivity meter (Type 308A, Leici company), a peristaltic pump (BT100-2J, 

Baoding LanGe constant Flow Pump Co., Ltd, China) and a water tank. In each 

experiment, the CuCl2 solution was continuously pumped from the pump into the cell 

and the effluent was returned to the water tank. In detail, the flow rate was set 

constant to 25 mL/min and the total solution volume was 200 mL in the system. The 

distance of 2 mm between the electrodes and a direct voltage were applied. The CDI 

electrodes were prepared as following: 80 mg electrode materials with 10 mg carbon 

black and 10 mg PTFE were dispersed into 5 mL ethanol solution under ultrasonic 

treatment for 5 min to form dispersion. Then, this dispersion was dropped onto the 

center of a nickel foam plate. After that, the resultant electrodes were dried at 140 °C 

overnight. The hole with a diameter of 5 mm was punched in the prepared electrode to 

allow the water flowing through the CDI device. 
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Fig. S1 TEM mapping of the CAs/TiO2.
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Fig. S2 FTIR spectra of CAs and CAs/MO hybrids.
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Fig. S3 Nitrogen adsorption−desorption isotherms (A); and their corresponding 

cumulative distribution curve (B) of the CAs/CeO2 and CAs/Fe2O3 hybrids.
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Fig. S4 The SAED patterns of the as-obtained CAs/MO hybrids.
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Fig. S5 TEM images of the CAs/TiO2 hybrids with different added amount of Ti3+ 

precursor: 5 mg (A) and 15 mg (B) Ti3+ precursor in 15 mL aqueous solution 

containing 30 mg of CAs.
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Fig. S6 CAs/TiO2 electrodes in different CuCl2 concentrations at a scan rate of 20 

mV/s.
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Fig. S7 Water contact angle measurements of the prepared electrodes.



Fig. S8 The actual CDI device.

Fig. S9 Cu(II) removal capacity and pH value of decontamination experiments for 50 

mg/L CuCl2 solution at various applied potentials.
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Fig. S10 Cu 2p high resolution XPS spectra of the CAs/TiO2 electrodes after the 

experiments at open circuit and applied voltage of 1.2 V. 
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Fig. S11 The removal efficiency of these electrodes with different initial 

concentration of Cu(II).
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Fig. S12 Current transient curve for CAs/TiO2 in a 200 mg/L Cu(II) solution at 1.2 V.

The charge efficiency   is obtained from the formula:1

F 
 



in which   is the deionization capacity (mol/g), F is the Faraday constant (96485 

C/mol) and   (charge, C/g) is calculated through integrating the current. Base on the 

formula, the charge efficiency of CAs/TiO2 was calculated to be 0.44.
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Fig. S13 SEM image of the CAs/TiO2 hybrids after cycling three times.



Fig. S14 Underlying mechanism of the CDI process for Cu(II) removal in the 

presence of NaCl.



Table S1 Parameters for Langmuir isotherm models
Cs max

(mg/g)
b

(L/mg)
R2

CAs/TiO2, 0 V 19.280 0.430 0.993

CAs, 1.2 V 30.353 0.309 966

CAs/Fe2O3, 1.2 V 41.424 0.268 0.996

CAs/CeO2, 1.2 V 49.281 0.238 0.990

CAs/TiO2, 1.2 V 57.134 0.337 0.989
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