## **Supporting Information**

## A Hybrid of Carbon Dots with 4-Chloro-7-Nitro-2,1,3-Benzoxadiazole for Selective Detection of p-Phenylenediamine

Wen-Jing Wang, Jun-Mei Xia, Xin Hai, Ming-Li Chen\*, and Jian-Hua Wang\*
Research Center for Analytical Sciences, Department of Chemistry, College of
Sciences, Northeastern University, Box 332, Shenyang 110819, China

## \*Corresponding author.

E-mail address: chenml@mail.neu.edu.cn (M.-L. Chen), jianhuajrz@mail.neu.edu.cn (J.-H. Wang).

Tel: +86 24 83688944; Fax: +86 24 83687659

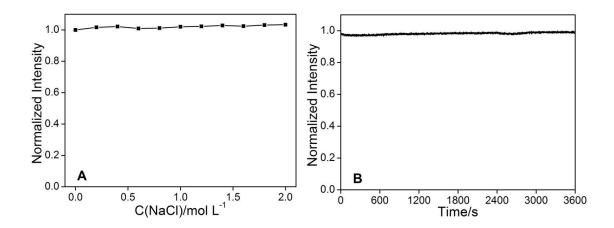



Fig. S1. The impact of ionic strength (A) and irradiation time (B) on the photoluminescence of CDs@NBD hybrid ( $\lambda_{ex}/\lambda_{em}$ =460/544 nm).

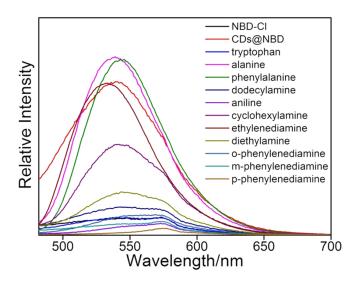



Fig. S2. The fluorescence spectra of the system after the reaction of NBD-Cl (at 0.5 mmol  $L^{-1}$ ) with a variety of small molecular amines (at 1 mmol  $L^{-1}$ ) and CDs.

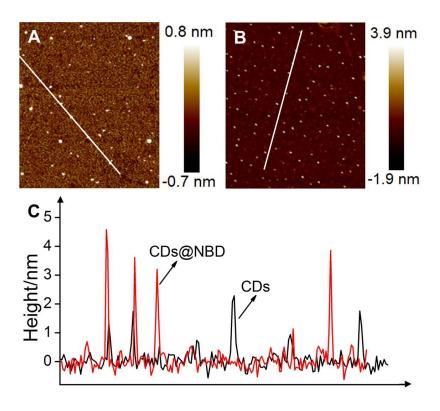



Fig. S3. AFM images of CDs (A) and CDs@NBD hybrid (B) on mica substrate with the height profiles along the lines (C).

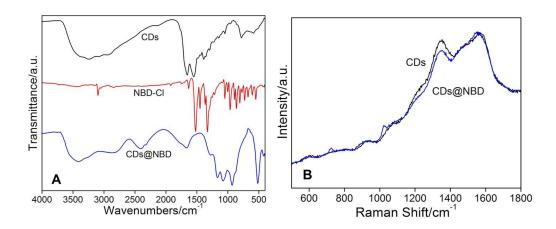



Fig. S4. FT-IR spectra of CDs, NBD-Cl and CDs@NBD hybrid (A). Raman spectra of CDs and CDs@NBD hybrid (B).

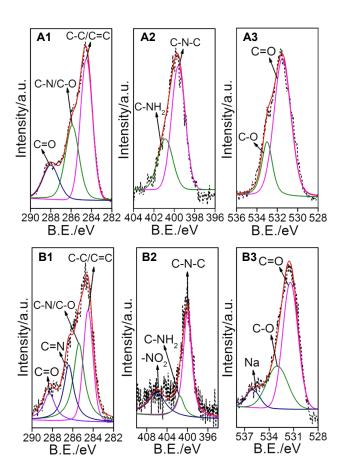



Fig. S5. High resolution XPS spectra of  $C_{1s}$ ,  $N_{1s}$ ,  $O_{1s}$  of CDs and CDs@NBD hybrid.

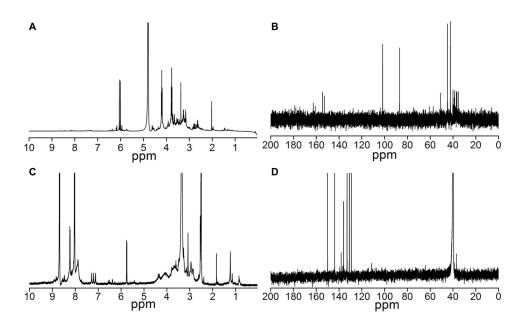



Fig. S6. <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of CDs (A, B) and CDs@NBD hybrid (C, D).

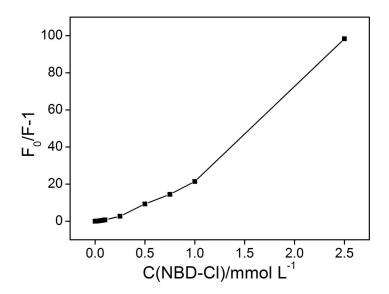



Fig. S7. The relationship between  $F_0/F-1$  and NBD-Cl concentrations (0, 0.075, 0.1, 0.025, 0.5, 0.75, 1, 2.5 mmol  $L^{-1}$ ).

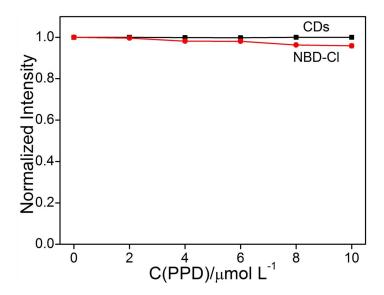



Fig. S8. The variation of fluorescence intensity of CDs and NBD-Cl versus PPD concentrations.




Fig. S9. Fluorescence decay curves of CDs@NBD hybrid in the absence and presence of PPD at a level of 10  $\mu$ mol L<sup>-1</sup>. Inset: Fluorescence lifetimes of CDs@NBD hybrid in the absence and presence of PPD ( $\lambda_{ex}/\lambda_{em}$ =460/544 nm).

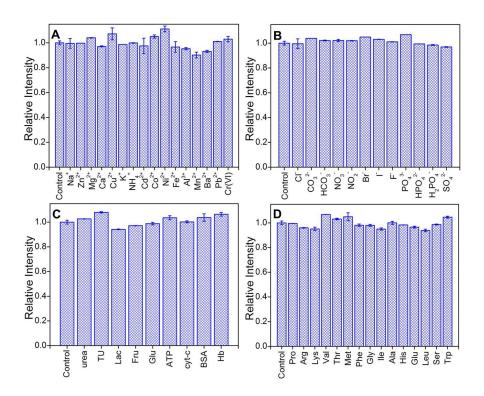



Fig. S10. The relative fluorescence intensities of CDs@NBD sensing system in the presence of 10 μmol L<sup>-1</sup> PPD (control) and potential interferences from various coexisting species.

 $A. in the presence of metal cations: 1 mmol L^{-1} of Na^+, Zn^{2+}, Mg^{2+}, Ca^{2+}, Cu^{2+}, K^+, \\ NH_4^+, Cd^{2+}, Co^{2+}, Ni^{2+}, Fe^{2+}, Al^{3+}, Mn^{2+}, Ba^{2+}, Pb^{2+}, Cr(VI)).$ 

B. in the presence of anionic species: 1 mmol L<sup>-1</sup> of Cl<sup>-</sup>, CO<sub>3</sub><sup>2-</sup>, HCO<sub>3</sub><sup>-</sup>, NO<sub>3</sub><sup>-</sup>, NO<sub>2</sub><sup>-</sup>, Br<sup>-</sup>, I<sup>-</sup>, F<sup>-</sup>, PO<sub>4</sub><sup>3-</sup>, HPO<sub>4</sub><sup>2-</sup>, H<sub>2</sub>PO<sub>4</sub><sup>-</sup>, SO<sub>4</sub><sup>2-</sup>).

C. In the presence of proteins and other biomolecules: 1 mmol L<sup>-1</sup> of urea, thiourea (TU), lactose (Lac), fructose (Fru), glucose (Glu), ATP and 10 mg L<sup>-1</sup> of cytochrome c (cyt-c), albumin bovine serum (BSA), hemoglobin (Hb)).

D. In the presence of amino acids: 100 μmol L<sup>-1</sup> of proline (Pro), arginine (Arg), lysine (Lys), valine (Val), Threonine (Thr), Methionine (Met), phenylalanine (Phe), glycine (Gly), isoleucine (Ile), 1 mmol L<sup>-1</sup> of alanine (Ala), histidine (His), glutamic acid (Glu), leucine (Leu), serine (Ser), tryptophan (Trp).