Electronic Supporting Material (ESI) for

Intergenerational responses of wheat (*Triticum aestivum* L.) to cerium oxide nanoparticles exposure

Cyren M. Rico,^{1,2*} Mark G. Johnson,² Matthew A. Marcus,³ Christian P. Andersen²

¹National Research Council, Research Associateship Program, 500 Fifth Street, NW, Washington, DC 20001, USA

²US Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Western Ecology Division, 200 SW 35th St., Corvallis, OR 97333, USA

³Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley,

CA 94720, USA

*Corresponding author. Tel: 541 754 4632; Fax: 541 754 4799; E-mail address:

Rico.Cyren@epa.gov (C. M. Rico)

Journal: Environmental Science: Nano

Prepared on: January 17, 2017

15 pages in length, including 4 figures and 9 tables

Determinations of plant growth and yield

Plant height was assessed using five measurements from randomly selected plants in each pot by measuring from soil surface to the flag leaf. The fully exposed and completely dried spikes were counted just before harvest and recorded as the number of spikes formed. For shoot biomass and water content determination, six plants were harvested from each pot and the weight was recorded before and after oven drying. In the case of yield components, the following parameters were measured using five random samples from each pot: spike length, number of spikes, number of spikelets/spike, number of grains/spike, and gain yield/spike. Grain yield from each pot was measured and recorded as grain yield/pot. The average of five measurements from each pot for agronomic and yield components, except grain yield/pot, was obtained and inputted as one replicate measurement for statistical analyses.

Factorial Treatment Combinations in 125 mg CeO₂-NPs/kg

First generation	Second generation treatment (S2)					
treatment (S1)	S2-Ce-0	S2-Ce-125				
S1-Ce-0	S1-Ce-0/S2-Ce-0	S1-Ce-0/S2-Ce-125				
S1-Ce-125	S1-Ce-125/S2-Ce-0	S1-Ce-125/S2-Ce-125				

Factorial Treatment Combinations in 500 mg CeO₂-NPs/kg

First generation	Second generation treatment (S2)					
treatment (S1)	S2-Ce-0	S2-Ce-500				
S1-Ce-0	S1-Ce-0/S2-Ce-0	S1-Ce-0/S2-Ce-500				
S1-Ce-500	S1-Ce-500/S2-Ce-0	S1-Ce-500/S2-Ce-500				

SI Figure 1. Experimental set-up for first (S1) and second (S2) generations exposure to 125 or 500 mg CeO₂-NPs/kg factorial treatments in wheat cultivated to grain production.

SI Figure 2. X-ray diffraction pattern of *n*CeO₂. Powder XRD patterns were collected in the Bragg-Brentano geometry within 20°-60° 2 θ -range (λ =1.5406Å).

CeO2 NPs concentration (mg L ⁻¹)	рН	Zeta potential (mV)	Diameter (nm)	Ce ion (mg L ⁻¹)
125	5.48 ± 0.21a	35.3 ± 0.7a	527.4 ± 66.5b	$1.08 \pm 0.37a$
500	5.09 ± 0.21a	$20.4\pm0.2b$	616.2 ± 8.5a	$2.11\pm0.32a$

SI Table 1. Hydrodynamic size, zeta potential, pH and Ce ion concentration of CeO2 NPs suspension.^{*a*}

^{*a*}Values are means \pm SE (n = 3). Means with the same letter are not significantly different at p < 0.05.

SI Figure 3. Plant growth (A) and grain formation (B) of wheat cultivated to grain production in second generation plants exposed to CeO₂-NPs during the first (S1), second (S2), or both generations. Values are means \pm SE (n = 6 except for S1-Ce-0/Ce-0 wherein n = 5). *, ** indicate significance at P \leq 0.05, 0.01, respectively.

	125	5 mg CeO ₂ -NP	s/kg	5	500 mg CeO ₂ -NPs/kg			
parameters	S1	S2	S1×S2	S1	S2	S1×S2		
Plant height at								
10 DAE	0.0010***	0.2148	0.3847	<0.0001***	0.0071***	0.1652		
20 DAE	0.0014***	0.6087	0.5807	<0.0001***	0.0864*	0.8593		
31 DAE	0.0022***	0.0252**	0.6037	0.0029***	0.0620*	0.5617		
Biomass	0.3980	0.8279	0.8540	0.0236**	0.5718	0.2393		
Number of spikes	0.2155	0.9018	0.1668	0.0071***	0.1986	0.0686*		
Number of grains per spike	0.1916	0.3038	0.3854	0.0776*	0.4116	0.5049		
Open spikes at								
53 DAE	0.1944	1.0000	1.0000	0.0072***	0.0072***	0.0072***		
54 DAE	0.0448**	0.4008	0.4008	<0.0001***	<0.0001***	<0.0001***		
55 DAE	0.4272	0.2956	0.1844	0.0007***	<0.0001***	0.0019***		
56 DAE	0.4918	0.0753*	0.2038	0.0005***	0.0006***	0.1305		
57 DAE	0.4386	0.1579	0.3494	0.0038***	0.0046***	0.0199**		
58 DAE	0.7515	0.3692	0.4570	0.0051***	0.0123**	0.3324		
59 DAE	0.8573	0.2848	0.3333	0.0084***	0.0046***	0.1324		
60 DAE	0.5558	0.1383	0.1961	0.0259**	0.0368**	0.1758		
61 DAE	0.9120	0.1752	0.0890*	0.0143**	0.0389**	0.0409**		
62 DAE	0.7118	1.0000	0.0167**	0.0011***	0.1123	0.0861*		
84 DAE	0.2155	0.9018	0.1668	0.0071***	0.1986	0.0686*		
Dry spikes at								
81 DAE	1.0000	0.1944	1.0000	0.0082***	0.0928*	0.0928*		
82 DAE	0.3050	0.0651*	0.3521	0.0044**	0.4930	0.3075		
83 DAE	0.3827	0.0613*	0.1053	0.0133**	0.8766	0.2626		
84 DAE	0.2637	0.0670*	0.0926*	0.0227**	0.6445	0.5321		
85 DAE	0.6628	0.1328	0.2084	0.0458**	0.4473	0.3731		
87 DAE	0.8290	0.2874	0.3758	0.0556*	0.1993	0.3864		
88 DAE	0.6229	0.0963	0.1669	0.0161**	0.1328	0.2081		
89 DAE	0.4690	0.1200	0.6896	0.4991	0.5934	0.3320		

SI Table 2. Two-way ANOVA measuring the effects of first (S1) and second (S2) generations CeO₂-NPs treatments on growth and yield parameters in wheat.

-							
. –	12	5 mg CeO ₂ -NF	s/kg	500 mg CeO ₂ -NPs/kg			
parameters	S1	S2	S1×S2	S1	S2	S1×S2	
Photosynthetic Rate	0.1870	0.4047	0.6872	0.4170	0.8354	0.4754	
Stomatal conductance	0.7613	0.4112	0.6820	0.2785	0.8382	0.8505	
Transpiration	0.8572	0.3745	0.7694	0.1644	0.8286	0.9769	
Water use efficiency	0.2629	0.9989	0.5668	0.1935	0.1439	0.4429	
Spike length	0.5788	0.1009	0.4336	0.5981	0.3068	0.5244	
100-grain weight	0.6733	0.3200	0.4192	0.6922	0.1444	0.9632	
Grain yield per pot	0.1690	0.5633	0.3916	0.3681	0.6004	0.7524	

SI Table 3. Two-way ANOVA measuring the effects of first (S1) and second (S2) generations CeO₂-NPs treatments on growth parameters in wheat.

SI Table 4. Shoot biomass and yield characters of wheat cultivated to grain production in first (S1) and second (S2) generations CeO₂-NPs treatments that showed statistical differences. Values are means \pm SE (n = 6 except for S1-Ce-0/Ce-0 wherein n = 5).

	Mean	49.3 ± 1.4	51.5 ± 1.4		Mean	49.4 ± 1.3	48.2 ± 1.2	
spike	S1-Ce-125	47.4 ± 2.4	51.0 ± 2.1	49.2 ± 1.4	S1-Ce-500	47.5 ± 1.7	47.2 ± 1.6	$47.4 \pm 1.2 *$
number of grains per	S1-Ce-0	51.6 ± 1.5	51.9 ± 2.7	51.7 ± 1.4	S1-Ce-0	51.6 ± 1.8	49.1 ± 1.8	50.2 ± 1.3
	S1/S2	S2-Ce-0	S2-Ce-125	Mean	S1/S2	S2-Ce-0	S2-Ce-500	Mean
	Mean	37.2 ± 0.9	36.9 ± 0.7		Mean	38.9 ± 1.4	37.0 ± 0.7	
spikes	S1-Ce-125	38.5 ± 1.3	36.8 ± 1.1	37.7 ± 0.8	S1-Ce-500	41.7 ± 1.8	37.7 ± 1.0	39.7 ± 1.1***
number	S1-Ce-0	35.6 ± 0.9	37.0 ± 0.9	36.4 ± 0.7	S1-Ce-0	35.6 ± 0.9	36.3 ± 0.8	36.0 ± 0.6
	S1/S2	S2-Ce-0	S2-Ce-125	Mean	S1/S2	S2-Ce-0	S2-Ce-500	Mean
	Mean	40.2 ± 0.3	40.0 ± 0.3		Mean	41.0 ± 0.5	40.6 ± 0.3	
(g)	S1-Ce-125	40.4 ± 0.4	40.2 ± 0.5	40.3 ± 0.3	S1-Ce-500	41.8 ± 0.6	40.9 ± 0.2	41.4 ± 0.3**
dry shoot	S1-Ce-0	39.9 ± 0.6	39.9 ± 0.4	39.9 ± 0.3	S1-Ce-0	39.9 ± 0.6	40.2 ± 0.6	40.1 ± 0.4
	S1/S2	S2-Ce-0	S2-Ce-125	Mean	S1/S2	S2-Ce-0	S2-Ce-500	Mean

	12	5 mg CeO ₂ -NP	's/kg	500 mg CeO ₂ -NPs/kg		
parameters	S1	S2	S1×S2	S1	S2	S1×S2
			Root			
Ce	<0.0001***	<0.0001***	< 0.0001***	0.0406**	<0.0001***	0.0421**
Al	0.0072***	0.0614*	0.0420**	0.0097***	0.1664	0.0054***
Fe	0.0193**	0.1623	0.1221	0.0314**	0.1790	0.0202**
Mn	0.0075***	0.1670	0.2094	0.0025***	0.2417	0.2361
Ca	0.6937	0.0599*	0.1867	0.4386	0.9972	0.0047***
Κ	0.9543	0.1056	0.3765	0.6623	0.1283	0.5910
Mg	0.6908	0.1265	0.1139	0.1139	0.4197	0.0426**
Р	0.9856	0.5543	0.9600	0.3803	0.0691	0.2160
			Shoot			
Ce	0.2256	0.0200**	0.0289**	0.0474**	<0.0001***	0.0004***
Al	0.8213	0.8972	0.7536	0.8973	0.5922	0.4584
Fe	0.5637	0.2659	0.9025	0.4148	0.2821	0.8836
Mn	0.7548	0.3740	0.9450	0.1384	0.2033	0.6202
Ca	0.6371	0.4521	0.6458	0.9314	0.3376	0.9457
Κ	0.3196	0.5668	0.2183	0.0622*	0.6885	0.9007
Mg	0.8734	0.3978	0.7263	0.6671	0.6175	0.7303
Р	0.0695*	0.4275	0.7888	0.3149	0.9870	0.5855
			Grains			
Ce	0.6009	0.6307	0.5988	0.5609	0.3771	0.2042
Fe	0.4677	0.9932	0.8863	0.6107	0.2270	0.8982
Mn	0.4493	0.0430**	0.0016***	0.2167	0.3138	0.7866
Ca	0.1604	0.0400**	0.0684*	0.8447	0.2341	0.6931
K	0.0430**	0.1124	0.0338**	0.2249	0.2598	0.5196
Mg	0.0059***	0.1454	0.0506*	0.5992	0.4789	0.8398
Р	0.0070***	0.0688*	0.0172**	0.8990	0.3529	0.7219

SI Table 5. Two-way ANOVA for elemental concentrations of wheat cultivated to grain production in first (S1) and second (S2) generations CeO₂-NPs treatments.

SI Table 6. Two-way ANOVA for C and N content in wheat shoots at mid-life growth stage (41 c	days
after exposure) in first (S1) and second (S2) generations CeO ₂ -NPs treatments.	

	125	5 mg CeO ₂ -NPs	/kg	500 mg CeO ₂ -NPs/kg			
parameters	S1	S2	S1×S2	S1	S2	S1×S2	
Shoot C (%)	0.1408	0.0997*	0.4564	0.0754*	0.8143	0.0969*	
Shoot $\delta^{13}C$ (‰)	0.0286**	0.0108**	0.1483	0.9468	0.7137	0.6684	
Shoot N (%)	0.4083	0.2906	0.4300	0.0120**	0.8685	0.9301	
Shoot $\delta^{15}N$ (‰)	0.1345	0.4838	0.8777	0.4281	0.9579	0.8418	
Shoot C:N	0.4874	0.2478	0.4353	0.0092***	0.9786	0.9416	

	125	5 mg CeO ₂ -NPs	/kg	500 mg CeO ₂ -NPs/kg			
parameters	S1	S2	S1×S2	S1	S2	S1×S2	
			Root				
C (%)	0.0117**	0.7483	0.0758*	0.8184	0.8296	0.5985	
δ ¹³ C (‰)	0.9218	0.4990	0.6433	0.9551	0.7617	0.2655	
N (%)	0.8981	0.7645	0.7136	0.3934	0.5534	0.1748	
δ ¹⁵ N (‰)	0.7343	0.0684*	0.3507	0.0408**	0.2342	0.3729	
C:N	0.7874	0.7753	0.5388	0.6439	0.6118	0.1498	
			Shoots				
C (%)	0.9618	0.6255	0.8092	0.0098***	0.6766	0.9170	
δ ¹³ C (‰)	0.5795	0.6130	0.5433	0.0302**	0.7349	0.5937	
N (%)	0.2395	0.7673	0.6676	0.0069***	0.5938	0.9640	
δ ¹⁵ N (‰)	0.4944	0.8390	0.6460	0.2426	0.2652	0.7521	
C:N	0.3588	0.7178	0.6428	0.0067***	0.6029	0.9895	
			Grains				
C (%)	0.6795	0.6345	0.1503	0.3069	0.4096	0.4859	
δ ¹³ C (‰)	0.7014	0.0291**	0.0081***	0.3150	0.0675*	0.0541'	
N (%)	0.8482	0.2575	0.4595	0.5996	0.3664	0.4332	
δ ¹⁵ N (‰)	0.0339**	0.2536	0.8348	0.0208**	0.8946	0.7898	
C:N	0.8559	0.2596	0.6108	0.8492	0.5597	0.6035	

SI Table 7. Two-way ANOVA for C and N content in wheat cultivated to seed production in first (S1) and second (S2) generations CeO₂-NPs treatments.

	Shoots						Shoots	
	S1/S2	S2-Ce-0	S2-Ce-125	Mean	S1/S2	S2-Ce-0	S2-Ce-500	Mean
С	S1-Ce-0	43.85 ± 0.51	44.67 ± 0.39	44.25 ± 0.33	S1-Ce-0	43.85 ± 0.51	44.28 ± 0.17	44.06 ± 0.26
(%)	S1-Ce-125	44.61 ± 0.13	44.93 ± 0.08	44.77 ± 0.09	S1-Ce-500	44.90 ± 0.17	44.32 ± 019	44.61 ± 0.15*
	Mean	44.23 ± 0.28	44.78 ± 0.19*		Mean	44.37 ± 0.30	44.30 ± 0.10	
	S1/S2	S2-Ce-0	S2-Ce-125	Mean	S1/S2	S2-Ce-0	S2-Ce-500	Mean
δ ¹³ C	S1-Ce-0	$\textbf{-25.61} \pm 0.16$	$\textbf{-25.32} \pm 0.26$	-25.47 ± 0.15	S1-Ce-0	-25.61 ± 0.16	$\textbf{-25.59} \pm 0.16$	-25.60 ± 0.11
(‰)	S1-Ce-125	$\textbf{-26.45} \pm 0.19$	-25.51 ± 0.25	-25.98 ± 0.21 **	S1-Ce-500	-25.53 ± 0.30	$\textbf{-25.70} \pm 0.22$	-25.62 ± 0.18
	Mean	-26.03 ± 0.17	-25.42 ± 0.17 **		Mean	-25.57 ± 0.16	-25.65 ± 0.13	
	S1/S2	S2-Ce-0	S2-Ce-125	Mean	S1/S2	S2-Ce-0	S2-Ce-500	Mean
Ν	S1-Ce-0	4.25 ± 0.24	3.94 ± 0.11	4.09 ± 0.14	S1-Ce-0	4.25 ± 0.24	4.23 ± 0.16	4.24 ± 0.14
(%)	S1-Ce-125	4.26 ± 0.14	4.21 ± 0.12	4.23 ± 0.09	S1-Ce-500	3.78 ± 0.16	3.73 ± 0.12	$3.75 \pm 0.10 * *$
	Mean	4.25 ± 0.14	4.07 ± 0.09		Mean	4.01 ± 0.16	3.98 ± 0.12	
	S1/S2	S2-Ce-0	S2-Ce-125	Mean	S1/S2	S2-Ce-0	S2-Ce-500	Mean
$\delta^{15}N$	S1-Ce-0	1.81 ± 0.54	2.02 ± 0.30	1.92 ± 0.30	S1-Ce-0	1.81 ± 0.54	1.75 ± 0.50	1.78 ± 0.35
(‰)	S1-Ce-125	1.18 ± 0.26	1.50 ± 0.31	1.34 ± 0.20	S1-Ce-500	1.42 ± 0.18	1.52 ± 0.20	1.47 ± 0.13
	Mean	1.50 ± 0.30	1.76 ± 0.22		Mean	1.61 ± 0.28	1.64 ± 0.26	
	S1/S2	S2-Ce-0	S2-Ce-125	Mean	S1/S2	S2-Ce-0	S2-Ce-500	Mean
C·N	S1-Ce-0	10.51 ± 0.66	11.39 ± 0.35	10.95 ± 0.38	S1-Ce-0	10.51 ± 0.66	10.53 ± 0.39	10.52 ± 0.36
CIN	S1-Ce-125	10.55 ± 0.37	10.72 ± 0.32	10.63 ± 0.23	S1-Ce-500	12.00 ± 0.51	11.95 ± 0.42	11.97±0.31***
	Mean	10.53 ± 0.36	11.05 ± 0.25		Mean	11.25 ± 0.45	11.24 ± 0.35	

SI Table 8. Isotope analysis of wheat at mid-life growth stage (41 days after exposure) in first (S1) and second (S2) generations CeO₂-NPs treatments. Values are means \pm SE (n = 6 except for S1-Ce-0/Ce-0 wherein n = 5).

Plant/plant	Exposure route	Findings	References
parts			
Soybean	Farmland soil	Accumulation of CeO ₂ -NPs with very limited transformation to Ce(III) species (12%)*	Priester et al., <i>P. Natl. Acad.</i> <i>Sci. USA</i> 2012 , <i>109</i> , E2451– E2456 Hernandez-Viezcas et al., <i>ACS Nano</i> 2013 , <i>7</i> , 1415- 1423
Kidney beans	Low organic matter soil, and organic matter enriched soil	Cerium was found largely as CeO ₂ -NPs with small fraction in Ce(III) species (12%)*	Majumdar et al., <i>J. Hazard.</i> <i>Mater.</i> 2014 , <i>278</i> , 279-287
Wheat	Farmland soil	CeO ₂ -NPs were detected in the root surface*	Du et al., Environ. Sci. Technol. 2015, 49, 11884- 11893
Corn roots	Natural soil	CeO ₂ -NPs transferred into the root tissues without any changes to chemical speciation*	Zhao et al., <i>J. Hazard. Mater.</i> 2012 , <i>225</i> , 131-138
Pumpkin shoots	Hydroponic	CeO2 NPs translocated into the shoots	Schwabe et al., <i>Chemosphere</i> 2013 , <i>91</i> , 512-520
Cucumber	Hydroponic	Presence of CeO ₂ - NPs with limited transformation to cerium phosphates and carboxylates (13- 34% depending on plant parts)	Zhang et al., <i>Metallomics</i> 2011 , <i>3</i> , 816-822 Zhang et al., <i>ACS Nano</i> 2012 , <i>6</i> , 9943-9950
Lettuce	Sand	Cerium was mostly CeO ₂ -NPs with small amounts of Ce(III) species (8-23%)	Zhang et al., <i>Nanotoxicology</i> 2013 , DOI: 10.3109/17435390.2013.8558 29 Gui et al., <i>PLOS One</i> 2015 , 10, e0134261 Zhang et al., <i>Environ. Pollut.</i> 2016 , http://dx.doi.org/10.1016/j.en vpol.2016.10.094

SI Table 9. Speciation of cerium in tissues of plants exposed to CeO₂-NPs.

*Experiments that used the same CeO₂-NPs employed in this study.

SI Figure 4. Ce μ XANES spectra from (A) crown spot 1, (B) root 1 spot 0, and (C) root 1 spot 1 from μ XRF maps in Figures 5. Spectra in red line represents linear combination (LC) fits, and white solid line spectra represents μ XANES from the sample.