Supplementary Material

S1 Collection of CBNs

CBNs from a tire manufacturing plant in central Taiwan were collected on Zefluor after-filter (Pall Life Sciences, 1.0 μ m pore) using a micro-orifice uniform deposited impactor (MOUDI) (model-110; MSP Corporation, Minneapolis, MN, USA). The sampling flow rate for the MOUDI was 30 L/min. For each sample, the collected air volume approximated 43.2 m³/day. Sampling was conducted for five working days per week during March and April (for a total of 20 days), 2016. Before and after each sampling, the filters were equilibrated in a dust-free desiccator (RH=60%; temperature=25°C) for 24h. An electrical balance with a sensitivity of 10 μ g was used to weigh each filter.

S2 Calculation of the daily CBs alveolar deposition dose

The daily CBs alveolar deposition dose was determined as previously described with modification ¹. The human daily CBs alveolar deposition dose was calculated using the following equation:

Human alveolar deposition dose =

CB aerosol concentration $\times V_E \times exposure$ duration \times alveolar deposition efficiency =

CB aerosol concentration ×
$$(10 \frac{\text{L}}{\text{min}}) \times (10^{-3} \frac{m^3}{L}) \times (8 \frac{hr}{d}) \times (60 \frac{\text{min}}{h}) \times 50\%$$

where VE is the respiratory volume/min. For nanoparticles, the alveolar deposition efficiency was assumes as 50% ². The human daily CBs alveolar deposition dose was estimated as 112.83 μ g/day. For nanoparticles, the alveolar retain efficiency was assumes as 60% ³. The human daily CBs exposure dose in bloodstream was estimated as 45.13 μ g/day.

Fig. S1 Co-culture of EA.hy926 cells, THP-1 cells and macrophages to assay the transmigration of THP-1 cells. EA.hy926 cells were firstly treated with CBNs and ROCK inhibitor Y-27632 for 24 h. Macrophages, which were seeded on the lower chamber, were used to secrete chemokines towards THP-1 cells. Finally, THP-1 cells were added to carry out the trans-migration assay.

Fig. S2 Cell viability (A) and cell membrane integrity (B) of EA.hy926 cells after exposure to different concentrations of CBNs.*: p < 0.05 and **: p < 0.01 compared to the control (cells treated without CBNs).

Fig. S3 Effects of Y-27632 (5 μ M) and fasudil (5 and 20 μ M) on CBNs treated endothelial cells. (A) Quantification of FITC-dextran in the lower chamber after treating EA.hy926 cells monolayer with CBNs and ROCK inhibitors. (B) The gene expression of eNOS in EA.hy926 cells treated with CBNs and/or ROCK inhibitors. *p < 0.05 and **p < 0.01 compared to the control. #p < 0.05 compared to cells treated with CBNs.

Fig. S4 Effects of NF- κ B inhibitor (BAY 11-7082, 10 μ M) on gene expression of ROCK1 (A) and ROCK2 (B) in CBNs treated endothelial cells. *p < 0.05 and **p < 0.01 compared to the control.

Metals	N220 (ng/mg)
AI	12.01±4.77
Cd	1.22±1.01
Со	0.25±0.09
Cr	2.13±1.33
Cu	0.57±0.19
Fe	5.52±0.73
Ga	4.05±1.88
In	1.01±0.19
Mn	1.81±0.07
Ni	9.92±3.05
Pb	8.47±1.02
Sr	7.14±1.79
Zn	229.22±41.31
Total	273.32

 Table S1 Concentrations of elemental metals in N220 CBNs.

 Table S2 Primers used for the targets amplification in this study.

Gene symbol	Forward sequence (5'-3')	Reverse sequence (5'-3')
GAPDH	GAGTCAACGGATTTGGTCGT	TTCATTTTGGAGGGATCTCG
IL-6	GAACTCCTTCTCCACAAGCG	GAATCCAGATTGGAAGCATCC
eNOS	CCAGCTAGCCAAAGTCACCAT	GTCTCGGAGCCATACAGGATT
ICAM-1	CGACTGGACGAGAGGGATTG	TTATGACTGCGGCTGCTACC
MCP-1	GCAATCAATGCCCCAGTCAC	GTGGTCCATGGAATCCTGAA
ZO-1	CAGGCAGCTTTCTATCCCCAGA	AAACTTGCGTTCAAATGGTCGG
Claudin-1	CTCACAGAGAGGGGGTCGTTG	ACTGTTAGCGGCAGTTTGGT
ROCK1	TTACTGACAGGGAAGTGAGGTT	AGGTAGTTGATTGCCAACGAAA
ROCK2	GGATGAAACAGGCATGGTACA	GGAAAACACCTACAGACCACC

- 1. Erdely A, Dahm M, Chen BT, Zeidler-Erdely PC, Fernback JE, Birch ME, Evans DE, Kashon ML, Deddens JA, Hulderman T, Bilgesu SA, Battelli L, Schwegler-Berry D, Leonard HD, McKinney W, Frazer DG, Antonini JM, Porter DW, Castranova V, Schubauer-Berigan MK. Carbon nanotube dosimetry: From workplace exposure assessment to inhalation toxicology. *Particle and fibre toxicology*. 2013;10:53
- 2. Sturm R. Nanotubes in the human respiratory tract deposition modeling. *Z Med Phys.* 2015;25:135-145
- 3. Chen J, Tan M, Nemmar A, Song W, Dong M, Zhang G, Li Y. Quantification of extrapulmonary translocation of intratracheal-instilled particles in vivo in rats: Effect of lipopolysaccharide. *Toxicology*. 2006;222:195-201