Shape change of biogenic elemental selenium nanoparticles from nanospheres to nanorods decreases their colloidal stability

Rohan Jain^{1*}, Norbert Jordan², Satoru Tsushima², René Hübner³, Stephan Weiss², Piet Lens^{1,4}

¹Department of Chemistry and Bioengineering, Tampere University of Technology,

Korkeakoulunkatu 10, FI-33720 Tampere, Finland

²Helmholtz-Zentrum Dresden - Rossendorf, Institute of Resource Ecology, Bautzner

Landstraße 400, 01328 Dresden, Germany

³Helmholtz-Zentrum Dresden - Rossendorf, Institute of Ion Beam Physics and Materials

Research, Bautzner Landstraße 400, 01328 Dresden, Germany

⁴UNESCO-IHE, Institute for Water Education, Westvest 7, 2611AX Delft, The Netherlands

Corresponding author:

Phone: +358 401981098, e-mail: <u>rohanjain.iitd@gmail.com</u>, mailto: Department of Chemistry and Bioengineering, Tampere University of Technology, Korkeakoulunkatu 10,

FI-33720 Tampere, Finland

gure S1. (a) SEM and (b) TEM of purified BioSe-Nanorods after 120 h of incubation. SAED patterns of the purified, (c) single-crystalline BioSe-Nanorod (inset) and (d) multiple CheSe-

Fi

Nanorods (inset) and their corresponding (e) XRD patterns. (f) Diameter distribution of BioSe-Nanorods based on SEM images.

Figure S2. Energy-disperse X-ray spectra obtained in the SEM during the formation of BioSe-Nanorods after incubation of 18 h, 24 h, 39 h, 48 h and 120 as well as of CheSe-Nanorods.