Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2017

In Tables S1-S5, the reference number within the parentheses corresponds to the reference number within the main text. A list of the acronyms used in the tables and their full names are provided in Table S6.

 Table S1 Sensitized (metal oxide-based) devices (Section 3.1)

Classification	Precursor(s)	Approach	Purification	CND Size	Surface functionality	CND role	Device architecture	J _{sc} (mA cm ⁻²)	V _{oc} (V)	FF	η (%)	Band edges (eV)	Optimized conditions	Explanation for performance	Reference
GQDs	4- bromobenzoic acid	SO	сс	13.5 nm (DLS)	Trialkyl phenyl	Sensitizer	FTO/TiO₂ NPs/ GQDs /I₃ [–] :I [–] /Pt	0.20	0.48	0.58	0.06ª	3.8/5.3	No optimization	Low affinity of GQD functional groups for TiO_2	¹ (54)
GQDs	4- bromobenzoic acid	SO	СС	13.5 nm (DLS)	Trialkyl phenyl; single carboxyl group	Sensitizer	FTO/TiO₂ NPs/ GQDs /I₃ [–] :I [–] /Pt	~4.5	>0.5	NR	NR	Tunable	No optimization	Addition of single carboxyl group resulted in higher sensitizer packing density due to edge-on alignment which produced more efficient electron transfer	² (55)
CQDs	γ- butyrolactone	AD	D (1 kDa)	3–15 nm	Carbonyl, alkyl, sulfonic	Sensitizer	FTO/TiO₂ NPs/ CQDs /I₃ [–] :I [–] /Pt	0.53	0.38	0.64	0.13	Only bad gap (indirect: 1.1; direct: 3.1) reported	No optimization	Emissive sites acting as recombination centers, inferior charge injection properties	³ (50)
CNDs	Melamine, glycerol	т	D (1 & 3.5 kDa)	0.8–3 nm	Hydroxyl, alkyl, aldehyde, amine, triazine	Sensitizer	FTO/TiO ₂ NPs/ CNDs /I ₃ [−] :I [−] /Pt	0.80	0.57	0.29	0.13	NR	No optimization	Two photon energy upconversion of N-doped CNDs enhanced harvesting of near-IR light. Low performance due to high recombination rates with CNDs and poor electron transfer.	⁴ (52)
CQDs	Graphite rods	EC	CTFG	1–4 nm	Hydroxyl, alkyl, carboxyl, epoxy	Sensitizer	Ti Foil/TiO₂NTs/ CQDs/I ₃ [–] :I⁻/Pt	0.02	0.58	0.35	0.004	Only bad gap (1.9) reported	No optimization	Showed feasibility as sensitizer; due to appropriate band alignment, photoexcited electrons easily injected into TiO ₂	⁵ (51)
CQDs	γ- butyrolactone	AD	D (MWCO NR)	NR (1–5 nm from TEM)	Carboxyl	Sensitizer	FTO/MWCNTs/ CQDs /I ₃ [−] :I [−] (not metal oxide based)	~1.7–3.8	~0.74– 0.86	NR	Only highest reported (1.23%)	NR	5 ± 0.5 μm MWCNT:CQD film	Depends on photoanode thickness; CQDs were covalently bound to CNTs via an ester linkage which allowed for more effective injection of the excited state electrons.	⁶ (45)
CNDs	Monkey grass	ΗT	FLTR & CTFG	2–6 nm	Carboxyl, hydroxyl, epoxy, amine; (pyridinic- N, pyrrolic-N, graphitic-N within	Sensitizer	FTO/TiO₂ NPs/ CNDs /I₃ [–] :I [–] /Pt	1.93 ± 0.07	0.49 ± 0.01	0.55 ± 0.02	0.53 ± 0.05	4.14/5.73	0.1 M I⁻/0.01 M I₂ (aq.); CND uptake not optimized ^b	Aqueous I ₃ -:I ⁻ vs. organic solvent resulted in stronger quenching of the CNDs by I ⁻ leading to enhanced utilization of the photoexcited electrons.	⁷ (170)
CNDs	CA, urea	MWV	CTFG	NR (<5 nm from TEM)	NR; presumably hydroxyl, carboxyl, and amine	Sensitizer	FTO/TiO₂ NPs/ CNDs /I₃ [–] :I [–] /Pt	NR Page S1	NR	NR	NR	NR	Not optimized; only report IPCE	CNDs could effectively inject electrons into TiO_2 displaying an electron injection rate and efficiency of 8.8 x 10^8 s ⁻¹ and 91% which was attributed to strong intrinsic visible absorption and	⁸ (115)

CNDs	CA, urea, formic acid	MWV	CTFG	0.5–2.5 nm (calculated using AUC)	NR; elude to carboxyl	Sensitizer	FTO/TiO₂ NPs/ CNDs /I₃ [–] :I [–] /Pt	0.99	0.49	0.50	0.24	NR	Sensitization conducted at pH 1 for 6-8 h	the lack of insulating, long chain functional groups. Depends on pH of CND sensitizer solutions, length of CND uptake, CND optical properties (<i>i.e.</i> , precursors employed); acidic solutions improved CND coverage; increased light harvesting range of CNDs to redder wavelengths did not translate to higher photocurrents	⁹ (48)
CDs	CA, ammonia (A)	т	CTFG	7–15 nm	Hydroxyl, alkyl, carboxyl, amine	Sensitizer	FTO/TiO ₂ NPs/ CDs /I ₃ ⁻ :I ⁻ /Pt	2.65	0.47	0.63	0.79	NR	Devices not directly optimized; Extent of N-doping in CDs optimized by varying precursor mass ratios (1:4 CA:A)	N-doping introduced new energy levels and trap states that increase visible absorption resulting in more electrons transferred to TiO ₂ CB enhancing the photocurrent.	¹⁰ (53)
CQDs	Strawberry powder	ΗT	None	1–4 nm	Hydroxyl, carboxyl, epoxy, alkyl	Sensitizer	FTO/m-TiO ₂ / CQDs /LPP/I ₃ ⁻ :I ⁻ /Pt	Dark: 0.035– 0.078	Dark: 0.207– 0.332	Dark: 0.327– 0.460	Dark: 4.6– 14.8	NR	HT reaction for 9h for cells in dark and illuminated conditions ^b	Depends on length of CQD formation (3-20h): From 3–9 h CQD conjugation increases, while >9h CQD size increases reducing quantum confinement effects. Operation under dark conditions occurs due to incorporation of a green emitting LPP and reportedly results in quite high PCE.	¹¹ (213)
								Light: 0.059– 0.244	Light: 0.338–	Light: 0.494–	Light: 0.011-				
GQDs	GO	AO	FLTR prior to PEG functionalization	~50 nm	PEG functionalized	Co-sensitizer	TiO₂ NPs /GQDs :N719/I₃ [–] :I [–] /Pt	6.65 ± 0.02– 14.07 ± 0.02	0.489 0.62 ± 0.01–0.66 ± 0.01	0.619 0.59 ± 0.01–0.71 ± 0.01	0.074 3.24 ± 0.01-6.10 ± 0.01	NR	Optimized GQD concentration and subsequent uptake by altering amount of GO (0.05 g) in synthesis	Hot electron injection from GQDs to TiO ₂ ; depends on quantity of GO used to make GQDs, which affected dye uptake; Low GO (GQD) amounts - no discernable difference in dye uptake or performance; High GO (GQD) amounts - GQDs aggregated and dye uptake decreased hindering performance	¹² (47)
GQDs	D-(+)- Glucosamine + Tris	MWV-HT	CTFG	3.9–4.8 nm	Amine, pyrrolic, pyridinic, hydroxyl, poly(carbazole)	Co-sensitizer	FTO/TiO ₂ NPs/ GQDs :N3/I ₃ ⁻ :I ⁻ /Pt	5.58	0.58	0.66	2.15	3.16/5.68	No optimization	Enhanced charge separation & collection; GQD PL energy transfer to N3 dye; suppression of back electron transfer	¹³ (49)
CQDs	CCl ₄ , NaNH ₂	ST	CTFG	1–4 nm	Carboxyl, amine; (pyridinic-N, pyrrolic-N within	Sensitizer; photoanode dopant	FTO/TiO ₂ : CQD composite/I ₃ ⁻ :I ⁻ /Pt	0.33–0.69	0.37–0.46	0.28–0.43	0.03–0.13	NR	No optimization	N-doping of CQDs lowered the work function of the composite which resulted in better PV performance over un- doped CQD:TiO2 composite	¹⁴ (56)
GQDs	GO	SCF	D (MWCO NR)	3–10 nm	Hydroxyl, carbonyl/carboxyl	Photoanode dopant	ITO/PT (or PPy): GQDs /N719/I₃ [–] :I [–] /graphite (not metal oxide based)	4.36–7.80	0.46–0.78	0.29–0.52	0.89–2.09	NR	0.03% (w/v) GQD in PPy composite	Depends on polymer used and GQD doping concentration; PT has poorer electron mobility (resulting in lower J_{sc}) due to high quantity of nonconducting impurities and lower band gap (resulting in higher V_{oc}); regardless GQD incorporation	¹⁵ (84)

GQDs	Pyrene	HT	D (3.5 kDa)	2–5 nm	MPA-capped through ligand exchange with dodecylamine; Bare GQDs: hydroxyl	Photoanode dopant/co- sensitizer	TiO ₂ NPs/CdSe QDs/ GQDs /ZnS film/SiO ₂ film/Na ₂ S:S/Cu ₂ S:brass	15.11–15.88	0.605– 0.662	0.614– 0.659	6.02 ± 0.05–6.53 ± 0.04	NR	CdSe QDs coated first following by GQDs (0.5 g L ⁻¹ solution with 1 h adsorption time)	Depends on coating sequence, GQD stock concentration, and length of adsorption time. GQDs function as an energy barrier suppressing charge recombination.	¹⁶ (216)
CDs	Carbon soot (from polystyrene foam)	AO	D (MWCO NR)	2–8 nm	Carboxyl	Photoanode dopant/co- sensitizer	FTO/TiO ₂ : CD grafted graphene/CdS:CdSe/Na ₂ S:S/Cu ₂ S	11.65–13.71	0.56–0.58	0.58–0.62	4.04–4.69	~3.8/~5.5	2.0 wt% CD grafted graphene	Larger pores afforded increased sensitizer uptake; graphene networks acted as bridge between TiO ₂ NPs increasing electron transport and decreasing recombination; CDs hindered graphene agglomeration and acted as co-sensitizer transferring photoexcited electrons to graphene Depends on mass of GQDs (10, 20, 33.3, and 50 mg)	¹⁷ (88)
GQDs	GO	SCF	D (MWCO NR)	0.8–2.6 nm	Polyaniline functionalized; Bare GQDs: hydroxyl, carboxyl	Photoanode dopant/electron acceptor	ITO/PANI- GQDs /N719/I₃ [–] :I [–] /Al	5.24–7.35	0.63–0.65	0.470– 0.654	1.57–3.12	Cite GQD CB (3.47) from ref. ¹⁸ (83)	33.3 mg GQDs in composite	incorporated into PANI-GQD composites. Varying GQD concentration changes compatibility between the LUMO of the donor PANI chains and CB of the GQD acceptors and changes morphology of composite from flakes (10 & 20 mg) to rods to a mixture of both. Interactions between PANI and GQDs produce BHJs on the molecular level which facilitate	¹⁹ (215)
GQDs	CNFs	AO	D (2 kDa)	~15 nm (DLS)	NR; presumably oxygen containing moieties	Electron shuttle/electron acceptor	FTO/TiO ₂ NFs/ GQDs :N719/I ₃ -:I [_] /Pt	11.72	0.68	0.78	6.22	NR	No optimization	charge carrier separation. Increased roughness factor of TiO ₂ NFs affording higher dye uptake; faster extraction of photogenerated electrons; reduced recombination	²⁰ (76)
Au@CDs	Glucose, HAuCl₄	ΗT	CTFG	130–250 nm	Hydroxyl, epoxy	Electron acceptor	FTO/ZnO Nanorods/N719/Au@ CDs /I₃ ⁻ :I ⁻ /MWCNTs	11.60	0.61	0.58	4.10	3.8/6.0 (Au@CD)	No optimization	Au@CDs promoted electron transfer and transport by accepting electrons from dye and shuttling them to ZnO and/or FTO; plasmonic nature of Au nanostructures and FRET from ZnO to dye both enhanced excited state electron generation of dye	²¹ (73)
CDs	L-ascorbic acid	т	сс	10–30 nm	NR; presumably oxygen containing moieties	Electron donor; co-sensitizer	FTO/TiO ₂ NPs/PbSe:CdS: CDs /Na ₂ S/MWCNTs	17.07 ± 0.19	0.690 ± 0.004	0.411 ± 0.004	4.84 ± 0.13	3.78/4.39	No optimization ^b	Due to co-mingling of sensitizers and appropriate band alignments, conductive CDs enhance electron propagation between QDs and TiO ₂ resulting in fast electron transport and slow recombination: CDs provide minute sensitizer effect	²² (63)
GQDs	CNFs	AO	CTFG (SSPPT)	5–40 nm	PEG functionalized	Electron donor	FTO/TiO₂ NFs/ GQDs :D719/I₃ [–] :I [–] /Pt	14.15–15.20	0.764– 0.766	0.74-0.75	7.31–7.95	NR	80 °C acid oxidation with 2.6 mg GQD loading	Depends on oxidation temperature and mass of GQDs loaded; Upconversion properties of GQDs results in FRET to dye enhancing the photocurrent	²³ (65)
CDs	Graphite rods	EC	CTFG	5–10 nm	Not directly reported; inferred that they are IL-	Electrolyte dopant	FTO/TiO ₂ NPs/N719/I ₃ ⁻ :I ⁻ : CDs :IL/Pt	1.94–6.64	0.57–0.66	0.47–0.67	0.59–2.71	NR	2.4 mg CDs:[bmim][PF ₆], 23 mg [bmim]I, 10:1	Depends on mole ratio Lil:I ₂ , [bmim]I wt. content, and CD:IL blend employed; Introduction of CDs into electrolyte reduced charge transfer resistance, increasing electron mobility, and	²⁴ (86)
								Page S3							

increased charge mobility of both polymer-based composites.

					stabilized since ILs were exfoliation electrolyte								μmol Lil:I₂	increased continuous illumination stability.	
GQDs	Vulcan XC-72 carbon black	AO	CTFG	~10 nm	Hydroxyl, carboxyl	CE dopant	FTO/TiO₂ NPs/N719/I₃ [–] :I [–] /PPy: GQDs	11.41–14.36	0.70–0.74	0.48–0.57	4.46–5.24	NR	10% (v:v) GQDs:PPy	Depends on GQD content in CE; optimized conditions comparable to Pt CE; GQD doping increased porosity of film introducing more active sites and thereby increasing charge transfer.	²⁵ (81)
GDs	Glucose	MWV	D (1 kDa)	~3.5 nm	NR; presumably oxygen containing moieties	CE dopant	FTO/TiO ₂ NPs/N719/Electrolyte/ GDs :PEDOT:PSS	12.82–14.23	0.67–0.72	0.60–0.70	5.14–7.20	NR	30 v% GDs in PEDOT:PSS solution	Depends on v% of GDs; Produces rougher surface morphology of CE film resulting in enhanced electrocatalytic activity and reduced R_{CT} which translates to higher J_{SC} and η .	²⁶ (82)
GQDs	Carbon black	AO/MWV	NR	Depends on reaction time; 60 min gives 2–10 nm	Carboxyl, carbonyl, hydroxyl, epoxy	CE dopant	FTO/TiO₂ NPs/N719/I₃⁻:I⁻ / GQDs :Carbon aerogel	11.36	0.79	0.67	5.97	NR	Devices not optimized; GQD:carbon aerogel thickness optimized (1.2 µm) with CV	Inclusion of GQDs into carbon aerogel increased catalytic efficiency at the CE compared to neat carbon aerogel due to nanoscale nature of GQDs that possess higher percentage of more energetic, catalytically active edge carbons	²⁷ (85)
CNDs	CA	ΗT	CTFG	4.1 ± 0.6 nm	Oxygen-rich functional groups, specifically carboxyl	CE dopant	FTO/TiO₂ NPs/N719/I₃ [–] :I [–] /PANI: CNDs	10.3–13.8	0.76–0.78	0.67–0.72	5.71–7.45	NR	5 wt% CNDs in PANI	CNDs acted as nuclei for PANI polymerization leading to a more homogeneous nucleation to produce films with higher porosity, surface roughness, conductivity, and electrocatalytic activity. Depends on CND wt%; 1 wt% not enough to produce highly porous film giving only slight improvement, while 10 wt% led to supersaturation and subsequent aggregation of nuclei which hindered homogenous polymerization, resulting in poorer performance. Optimized (5 wt%) CE comparable to Pt CF	²⁸ (223)
GQDs	CA, thiourea	HT	CTFG	1.0–5.0 nm	Hydroxyl, carboxyl, amine/amide, sulfur moieties	CE dopant	FTO/TiO₂ NPs/N719/I₃ [–] :I [–] /PANI: GQDs	5.39–9.30	0.38–0.44	0.329– 0.497	0.754– 1.603	NR	PANI-GQD CE electropolymerized at a scan rate of 10 mV s ⁻¹	Inclusion of GQDs led to mace-like morphology compared to spherical NPs when electropolymerizing neat PANI, which enhanced surface area and conductivity. Performance depends on scan rate used for electropolymerization; scan rates of 30, 50, 80, and 100 mV s ⁻¹ led to lower J _{sc} and FF producing a lower PCE.	²⁹ (224)

^aValue calculated by authors; ^bMultiple devices characterized per each condition and/or for all device architectures (including controls)

 Table S2
 Bulk Heterojunction Organic Photovoltaics (Section 3.2)

Classification	Precursor(s)	Approach	Purification	CND Size	Surface functionality	CND role	Device architecture	J _{sc} (mA cm ^{−2})	V _{oc} (V)	FF	η (%)	Band edges (eV)	Optimized conditions	Explanation for performance	Reference
GQDs	GSs	HT	D (3.5 kDa)	5–15 nm	Carboxyl; subsequent functionalization with aniline	Electron acceptor	ITO/PEDOT:PSS/P3HT: GQDs /LiF/Al	0.36–3.51	0.58–0.62	0.47– 0.53	0.12–1.14	3.55/5.38	1 wt% GQDs	Depends on GQD wt%; Appropriate band alignment, improved optical properties and morphology (<i>i.e.</i> , nanoscale phase separation) of composite film,	³⁰ (61)
GQDs	Graphene film	EC	D (8–14 kDa)	3–5 nm	Hydroxyl, carbonyl	Electron acceptor	ITO/PEDOT:PSS/P3HT: GQDs /AI	0.92–6.33	0.67–0.77	0.27–0.3	0.19–1.28	4.2/4.4	Annealed device (140 °C for 10 min)	Appropriate band alignments, nanoscale size, and electron mobility within GQDs led to more interfaces for sufficient carrier separation and transportation	³¹ (68)
GQDs	GO	AO	D (3.5 kDa)	NR (~5 nm from TEM)	Carbonyl, hydroxyl, epoxy	Electron acceptor	ITO/PEDOT:PSS/PTB7:PC ₇₁ BM: GQD s /Al	15.2–16.1	0.733–0.740	0.604– 0.676	7.11–7.60	NR	0.5 wt% GQDs reduced for 5 h	Depends on wt% of GQDs and whether the as-synthesized GQDs or dots that were reduced for 5 or 10 h are employed; non-reduced GQDs (<i>i.e.</i> , highly oxygenated) show higher absorptivity while fully reduced (10 h) GQDs show higher conductivity; partially reduced (5 h) GQDs provides an optimum balance of optical absorptivity and electrical conductivity.	³² (62)
CNDs	CA, oleylamine	SFTP/T	CTFG	1–4.5 nm	Aldehyde, carboxyl, olevlamine	Electron acceptor	ITO/PEDOT:PSS/P3HT: CNDs /AI	0.29	1.59	48.5	0.23	2.80– 3.80/6.30	No optimization	CNDs functioned as electron acceptors but insulating oleylamine ligand layer hindered charge transport (lowered J _{sc})	³³ (64)
CQDs	D-glucose, ODA	т	сс	1–4 nm	Alkyl	Electron acceptor	ITO/PEDOT:PSS/PFO-DBT: CQDs (or ZnO@ CQDs)/Al	6.0–14.8	0.80–0.88	0.26 - 0.32	1.5–3.9	4.1/NR (ZnO@CQD s)	40 mg mL ^{−1} active layer, 1:1 wt ratio PFO- DBT:ZnO@CQDs (or CQDs)	Increased roughness of film, which led to formation of charge transport channels; large surface area of CQDs resulted in increased heterojunction interfaces reducing recombination; ZnO improved charge carrier mobility and conductivity	³⁴ (77)
GQDs	Double- walled CNTs	AO	UFCT (3 kDa)	3–5 nm	NR; presumably oxygen containing moieties	Co-electron acceptor	ITO/PEDOT:PSS/P3HT:PCBM: GQDs / LIF/AI	11.80–26.46	0.56–0.60	0.28– 0.33	2.05–5.24	3.44/5.75	P3HT:PCBM weight ratio 1:0.6 with GQDs at 0.05 mg mL ⁻¹	Depends on P3HT:PCBM ratio; GQD concentration not optimized, held constant; Improvement from enhanced absorption of blended film and appropriate band alignment	³⁵ (66)
GQDs	GO	ΗT	D (3.5 kDa)	27–38 nm	Carboxyl, hydroxyl, epoxy	Co-electron acceptor	ITO/MoO ₃ /PCDTBT:PC ₇₁ BM: GQDs /L iF/AI	10.81 ± 0.02– 12.79 ± 0.04	0.85 ± 0.01– 0.88 ± 0.01	0.601 ± 0.001– 0.636 ± 0.002	5.55 ± 0.07–7.04 ± 0.02	4.7 (work function)	0.08 wt% GQDs ^a	Depends on GQD wt%; GQDs provide large surface areas for the formation of exciton separation (donor/acceptor) interfaces and charge transport pathways; too high of a GQD wt% causes dots to agglomerate forming parasitic pathways; GQDs increase incident light absorbed due to scattering and reflective effects	³⁶ (58)
GQDs	GO	AO	D (3.5 kDa)	~5 nm	Hydroxyl, carboxyl	Co-electron acceptor/ac tive layer dopant	ITO/PEDOT:PSS/p- DTS(FBTTh ₂) ₂ :PC ₇₁ BM: GQDs /Ca/Al	13.35–13.58	0.748–0.754	0.60– 0.63	5.94–6.40	NR	1 wt% GQDs	Strong light scattering by GQDs increased optical path length; nanoscale GQDs led to favorable morphology and phase separation of film enhancing current density and reducing charge transfer resistance	³⁷ (78)
CQDs	Polystyrene-	Т	OE	NR	NR	Active layer	ITO/TiO ₂ /PCDTBT:PC ₇₁ BM: CQDs /M	12.28–13.61	0.86-0.87	0.56–	5.98–7.05	NR	0.062 wt% CQDs ^a	Depends on CQD wt% in active layer; introduction of CQDs led to	³⁸ (235)

	co-maleic anhydride, EDA					dopant	oO₃/Ag			0.60				more homogenous phase separation of the active layer resulting in continuous interpenetrating networks that improved charge transfer; CQDs increased electron and hole mobility resulting in improved charge carrier transport; CQDs had minor electron donor contribution via fluorescence property.	
CNPs	CA, urea	MWV	CTFG	1–5 nm	Hydroxyl, carboxyl, amine, alkyl	Active layer dopant	ITO/PEI/P3HT:ICBA: CNPs /MoO ₃ /Ag	7.74 ± 0.02– 11.31 ± 0.01	0.84 ± 0.01– 0.85 ± 0.01	0.5234 ± 0.0004- 0.6109 ± 0.0002	3.40 ± 0.02–5.90 ± 0.02	NR	3 wt% CNPs ^a	Depends on CNP wt%; CNPs acted as scattering centers to increase light path length; inclusion of CNPs created interpenetrating network of donor/acceptor forming efficient charge separation interfaces that enhanced transport and reduced recombination; excess doping led to deterioration of network	³⁹ (89)
GQDs	Graphite powder	T w/ GIC	FLTR/D	NR (3–10 nm from TEM)	PEG (0.2, 1, or 3 kDa MW) functionalized	Active layer dopant	ITO/PEDOT:PSS/P3HT:PCBM: GQDs / Al	8.2 ± 0.9–13.8 ± 0.5	0.30 ± 0.02– 0.55 ± 0.01	0.276 ± 0.04– 0.542 ± 0.09	0.81 ± 0.11-4.10 ± 0.04	LUMO ~3.3	GQDs functionalized with 0.2 kDa PEG ^a	possibly due to PEG wrapping around GQD or interfering with donor/acceptor domains; films showed larger more clump-like domains. Optimized MW shows higher performance than GQD free device due to faster P3HT exciton dissociation which results in absorption improvements arising from fewer bound charges. Pristine GQDs showed poor performance due to minimal oxidation from synthetic approach which leads to very few edge sites to facilitate	⁴⁰ (236)
GQDs	GO?	ST		Article not in Engl	ish	Active layer dopant	ITO/PEDOT:PSS/P3HT:PC ₆₁ BM: GQD s /Al	1.61–2.50	0.48–0.54	0.335– 0.556	0.31–0.75	NR	0.15% mass fraction GQDs with an annealing step	exciton dissociation. Article not in English however performance depends on GQD mass fraction (0.03, 0.06, 0.15, and 0.30%), subsequent reduction time of GQDs (2, 5, 10, 30, and 45 min), and whether the device is annealed or not.	⁴¹ (237)
g-C₃N₄ QDs	Bulk g-C₃N₄ made from urea	ST	FLTR	10–20 nm	CN heterocycles, triazine, carboxyl	Active layer dopant	ITO/ZnO/ C₃N₄ QDs :P3HT:PC ₆₁ BM (or PBDTTT-C:PC ₇₁ BM or PTB7- Th:PC ₇₁ BM)/PEDOT:PSS/MoO ₃ /Ag	11.44–16.74	0.61–0.78	0.571– 0.699	4.23 ± 0.25–9.18 ± 0.19	NR	No optimization ^a	PV parameters depend on active layer employed. In all cases, the inclusion of $g-C_3N_4$ QDs produced higher performing devices over undoped and bulk $g-C_3N_4$ due to an increase in J_{sc} and, therefore, the PCE, while V_{oc} and FF remain relatively constant. Improvements attributed to (1) increased film surface roughness providing better interfacial contact, (2) increased optical absorption (and possibly scattering), (3) increased PL quenching of P3HT indicating QDs facilitate electron transfer due to their conductivity, (4) decreased impedance, and (5) increased carrier mobility.	⁴² (238)
GCDs	Fumaronitril e	Т	NR	3–6 nm	Hydroxy, amine, alkyl, nitrile; (pyridinic-N, pyrrolic-N within core)	Electron donor/subp hotosensitiz er	ITO/PEIE/PTB7:PC ₇₁ BM: GCDs /MoO ₃ /Ag	16.6 ± 0.14	0.74 ± 0.003	0.71 ± 0.03	8.4 ± 0.2	NR	No optimization ^a	Inclusion of GCDs resulted in enhanced light absorption and improved electron transport; photoexcited electrons transferred from GCDs to PC ₇₁ BM via FRET and π - π stacking interactions between GCDs and PC ₇₁ BM induced efficient charge transport.	⁴³ (71)
GQDs	GQDs:	GQDs: T-	D (2 kDa)	GQDs: ~5 nm	GQDs: hydroxyl,	GQDs: HEL	ITO/PEDOT:PSS: GQDs /PTB7:PC ₇₁ B	15.5 ± 0.05– Page	0.719 ± 9 S6	0.618 ±	7.22 ±	NR	0.4 wt% GQDs in HEL and	Depends on GQD wt% in HEL and whether rGQDs are included in	⁴⁴ (240)

	Carbon fibers; rGQDs: GO	AO; rGQDs: HT			carboxyl, epoxy; rGQDs: same but much smaller amount	dopant; rGQDs: active layer dopant	M:(rGQDs)/TiO _x /Al	17.3 ± 0.03	0.012–0.748 ± 0.002	0.0019- 0.718 ± 0.0020	0.08-8.67 ± 0.10		0.02 wt% rGQDs in active layerª	active layer. Inclusion of GQDs improved film morphology; negatively charged GQDs increase size of PEDOT-rich cores (grain size) and spread out grain boundaries more evenly which improves current pathways and charge conductance. GQDs also extended light scattering and light confinement; however higher wt% likely decrease light penetration negatively affecting devices. Inclusion of rGQDs in active layer decreased resistance owing to conductivity of rGQDs. Taking advantage of both improvements leads to synergistic effect, resulting in highest performance.	
GQDs	CFs	AO	D (2 kDa)	20–30 nm	NR; presumably oxygen containing moieties	Hole extraction layer	ITO/ GQDs /P3HT:PC ₆₁ BM or DR ₃ TBDT:PC ₇₁ BM/LiF/AI	9.77–11.36	0.50–0.92	0.502– 0.652	2.57–6.82	4.9 (work function)	1.5–2 nm layer of GQDs ^a	Depends on donor:acceptor pair and layer thickness of GQD HEL; high conductivity and homogeneous morphology of GQD films afforded efficient HEL	⁴⁵ (67)
GQDs	Vulcan VXC- 72 carbon black	AO	FLTR	~4 nm	Mainly carboxyl; some hydroxyl, epoxy	Hole extraction layer	ITO/ GQDs /PTB7:PC ₇₁ BM or PCDTBT:PC ₇₁ BM/LiF/AI	10.65–15.20	0.75–0.89	0.67– 0.69	6.30–7.91	5.26 (work function)	No optimization	Depends on donor:acceptor pair; large quantity of carboxyl functionality increased GQD work function affording good ohmic contact with the donor polymers which improved hole extraction and suppressed recombination; high transmittance of homogeneous GOD film allowed for increased light collection.	⁴⁶ (59)
GQDs	CNFs	AO	CTFG (SSPPT); D	8–10 nm	NR; presumably oxygen containing moieties	co-hole extraction layer	ITO/PEDOT:PSS: GQDs /P3HT:PC ₆₁ B M/LiF/Al	14.59–16.08	0.58–0.59	0.48– 0.50	4.08–4.74	5.0 (work function)	20 vol% GQDs in hole extraction organogel	Depends on vol% of GQDs added; GQDs electrostatically interacted with PEDOT chains forming core-shell like nanostructure; reorientation of the PEDOT domains improved charge hopping pathways (<i>i.e.</i> , enhanced conductivity)	⁴⁷ (69)
CNDs	CA, urea	MWV	NR	2–5 nm	NR; presumably oxygen and amine containing moieties	Buffer layer/hole extraction layer	ITO/TiO ₂ /PCDTBT:PC ₇₁ BM/ CNDs /M oO ₃ /Ag	13.70 ± 0.07– 14.71 ± 0.07	0.86 ± 0.01– 0.87 ± 0.05	0.5465 ± 0.0002– 0.5693 ± 0.03	6.51 ± 0.11–7.22 ± 0.13	NR	0.15 mg mL ⁻¹ CND solution spin-casted at 2300 rpm and annealed for 5 min. ^a	casting speed (1500, 2300, 3200 rpm), and annealing time (5 or 10 min). Incorporation of CND film lowers work function of active layer, decreasing energy barrier and promoting hole extraction, generates a rougher surface for increased reflected and scattered light, decreased current leakage, and improved hole mobility producing more balanced charge transport. At optimized concentration CNDs uniformly disperse in interfacial layer to give better phase separation and interfacial contact increasing conductivity. Low spinning speeds lead to a thick, poor quality film that increase charge recombination	⁴⁸ (239)
CDs	CA, EDA	HT	D (1 kDa)	1–2 nm	Hydroxyl, carboxyl, amine	Buffer layer	ITO/PEDOT:PSS/DR ₃ TBDTT:PC ₇₁ BM (or P3HT:PC ₆₁ BM)/ CDs /Al	9.86–13.32	0.608–0.905	0.52– 0.64	3.15-7.67	NR	0.1−0.5 mg mL ⁻¹ CD solution for film deposition depending upon device architecture ^a	while high speeds produce thin poorly conducting films. PV parameters depend on BHJ architecture employed; in all cases incorporation of CDs as buffer layer showed enhanced parameters over no or conventional buffer layer due to improved ohmic contact, reduced current leakage, more balanced charge transport, reduced charge recombination, higher exciton dissociation, and increased	⁴⁹ (242)

CQDs	Acetylene	CVD	FLTR	2–7 nm	Mostly alkyl; some hydroxyl/carboxy l	Buffer layer	ITO/PEDOT:PSS/P3HT:PC ₆₁ BM(or PTB7:PC ₆₁ BM, PTB7- Th:PC ₇₁ BM)/ CQDs /Al	9.44–16.26	0.630–0.792	0.50– 0.67	2.97 ± 0.10-8.18 ± 0.03	3.84/7.00	0.05–0.1 mg mL ^{−1} CQD solution for film deposition regardless of BHJ architecture ^a	 charge collection efficiency; CDs also lowered work function of Al electrode and led to more (air) stable devices. PV parameters depend on BHJ architecture employed; in all cases incorporation of CQDs as buffer layer showed enhanced parameters over no or conventional buffer layer due to improved electron-extracting, hole-blocking ability, and reduced interfacial resistance. CQD devices showed improved thermal stability due to reduced molecular diffusion. More hydrophilic CQDs showed poorer performance due to increased surface defects that hindered charge transport. 	⁵⁰ (241)
GQDs	Vulcan VXC- 72 carbon black	AO	FLTR	~4 nm	TMA functionalized	Buffer layer; labelled as cathode interlayer (CIL)	ITO/PEDOT:PSS/PCDTBT:PC ₇₁ BM(or PTB7-Th:PC ₇₁ BM)/ GQDs (or Ca, LiF, ZnO)/Al (or Au, Ag)	9.42–17.39	0.76–0.91	0.6452– 0.7111	5.41–8.80	NR	3–7 nm GQD layer (don't show results) with Al cathodeª	 Depends on device architecture and cathode selection: PCDTBT gives higher V_{oc} while PTB7-Th gives higher J_{sc} (and PCE); Cathode performance - Al>Ag>Au. All GQD included devices show improvement over controls and conventional buffer layers (CILs) in part from conductivity of GQDs which reduced series resistance. GQDs form interfacial dipole at metal cathode interface lowering the work function creating an ohmic contact and increasing the built-in potential across the active layer which improves charge carrier selection/extraction and suppresses charge recombination. Increasing the alkyl chain length on the functional groups from methyl to ethyl to n-butyl gradually decreases performance possibly due to decreased conductivity from more insulating functionality. 	⁵¹ (244)
GQDs	CA, ammonia	ΗT	D (3 kDa)	2–8 nm	NR; likely oxygen and nitrogen containing moieties	Buffer layer; labelled as conductive intermediat e layer (IML)	ITO/PEI/P3HT:PCBM/PEDOT:PSS/ G QDs [PEI/P3HT:PCBM/PEDOT:PSS]/ Ag	6.61–8.95	0.58–1.15	0.49– 0.61	3.15–3.72	4.9 eV (work function?; not discussed)	No optimization	Not much discussion in lieu of GQDs; mainly focused on AgNPs as the IML but showed feasibility of GQDs as IML. Compared single and tandem (architecture includes bracketed components in 'Device Architecture') cells. Both types of devices show improvement in J_{sc} , FF, and PCE over devices without GQDs. Single cells have higher J_{sc} values while tandem devices have higher V_{oc} values. Thicker layer of GQDs decreased efficiency due to lower conductivity (no results shown).	⁵² (245)
GQDs	CA, L- cysteine	HT	NR	0.5–3.5 nm	NR; likely oxygen and sulfur containing moieties	Buffer layer dopant	ITO/ GQDs - Cs ₂ CO ₃ /P3HT:PCBM/V ₂ O ₅ /Au	9.04	0.585	0.6	3.17	Only bad gap (3.3) reported	No optimization	Inclusion of GQDs into Cs ₂ CO ₃ buffer layer promoted exciton dissociation at the P3HT/buffer interface enhancing electron transfer and hole blocking; due to wide bandgap and appropriate energy alignments	⁵³ (90)
GQDs	CA, L- cysteine	HT	NR	~5 nm	Carboxyl, hydroxyl, epoxy/ether, thioether	Buffer layer dopant	ITO/ GQDs - Cs ₂ CO ₃ /P3HT:PCBM/V ₂ O ₅ /Au	~5.0–9.2	0.510–0.585	0.35– 0.60	~0.90– 3.23	4.04/7.34 (GQDs- Cs ₂ CO ₃)	50% GQDs in a buffer layer annealed at 120 °C ^a	Depends on GQD concentration and slightly on annealing temperature; at higher concentrations insulating nature of oxidized GQDs plagues device performance; Optimized conditions results in excellent electron-selective buffer (<i>i.e.</i> , hole-blocking ability) that	⁵⁴ (87)

Page S8

GQDs	GNSs	LA/HT	CTFG (nothing after HT treatment)	3.5–6.0 nm	NR; presumably oxygen containing moieties	Buffer layer dopant	FTO/TiO ₂ NPs/ GQDs /P3HT/PEDOT:PSS/Pt	7.98 ± 0.18	0.757 ± 0.009	0.52 ± 0.02	3.16 ± 0.05	3.47/5.94	No optimization ^a	has the appropriate work function and band alignments for effective charge dissociation GQDs provide better conduits for photoexcited charge transfer and suppressed recombination; GQDs reduced energy offset between donor (P3HT) and acceptor (TiO ₂) which promoted charge carrier propagation	¹⁸ (83)
CNDs	CA, urea	MWV	CTFG	1–5 nm	Hydroxyl, carboxyl, amine	Buffer layer dopant	ITO/PEI: CNDs /PCDTBT:PC ₇₁ BM/Mo O ₃ /Ag	12.34 ± 0.11– 14.84 ± 0.19	0.86 ± 0.01– 0.87 ± 0.01	0.4717 ± 0.01– 0.5854 ± 0.03	5.01 ± 0.13–7.56 ± 0.20	4.4 (work function)	1.0 wt% CNDs in PEI buffer layerª	Incorporation of CNDs led to higher surface roughness and better morphology of the film which resulted in improved interfacial contact; CNDs improved built-in potential and charge mobility/transport properties and decreased recombination; slightly enhanced light absorption due to improved scattering of composite film.	⁵⁵ (243)

^aMultiple devices characterized per each condition and/or for all device architectures (including controls)

 Table S3
 Solid-state
 Solar Cells
 Section 3.3
 Section 3.3

Classification	Precursor(s)	Approach	Purification	CND Size	Surface functionality	CND role	Device architecture	J _{sc} (mA cm ^{−2})	V _{oc} (V)	FF	η (%)	Band edges (eV)	Optimized conditions	Explanation for performance	Reference
GQDs	GO	HR	NR	4–15 nm	Hydroxy, carboxyl, epoxy	Sensitizer	AZO/ZnO NWs/ GQDs /TPD/Au	0.45	0.8	0.5	0.2	1.8– 2.8/5.1–5.4	No optimization	Insufficient hole collection due to small interfacial contact between GQDs & TPD	⁵⁶ (46)
CQDs	Glucose, chitin, chitosan	ST	CTFG/FLTR	2.6-14.1 nm (depends on precursor)	Hydroxyl, carboxyl, epoxy, amine, amide	Sensitizer	FTO/ZnO Nanorods/ CQDs /CuSCN/Au	0.054–0.674	0.175– 0.300	0.35–0.44	0.006– 0.077	NR	Mixture of chitin- and chitosan-derived CQDs	Depends on precursor employed to make CQDs (<i>i.e.</i> , the surface functionality of the resultant dots) evidenced by variability in internal resistance; glucose-derived dots led to higher recombination; all devices poor performance due to low internal efficiency.	⁵⁷ (44)
CDs	Glucose	HT	CTFG	~16 nm	NR; likely oxygen moieties	Electron donor/accept or	FTO/ZnS/CdS QDs/ZnS/ CDs /CuPc/Na ₂ S/MWCNT	1.70–1.88	0.564– 0.605	0.31–0.36	0.34–0.35	NR/4.5	No optimization	CDs functioned as excellent electron conduits channeling charge to current collector due to high conductivity, nanoscale proximity to surrounding components, and favorable energy alignments; CdS QDs transfer electrons to CuPc via FRET which then cascade into the CDs that shuttle them to FTO: liquid electrolyte gave higher performance	⁵⁸ (72)
GQDs	Oxidized GSs	НТ	D (3.5 kDa)	2–16 nm	Hydroxy, carboxyl, epoxy	HEL/EBL	In:Ga/Si/ GQDs /Au	18.0–25.9	0.47–0.50	0.47–0.63	4.6–6.2	2.15/5.95	Methylated Si; 80 nm layer of 2–6 nm GQDs ^a	Depends on GQD size & layer thickness; due to appropriate band alignment GQDs efficiently transported holes and reduced carrier recombination at anode	⁵⁹ (60)
CQDs	Graphite Rods	EC	CTFG	2–8+ nm	NR; Likely hydroxy, carboxyl, epoxy	HEL/EBL	In:Ga/n-Si/Si NWs/ CQDs /Au	17.6–30.1	0.34–0.51	0.31–0.59	2.6–9.1	2.26/5.56	Methylated Si; 23 nm layer of 2–6 nm CQDs	Depends on CQD size & layer thickness; due to appropriate band alignment GQDs efficiently transported holes and reduced carrier recombination at anode	⁶⁰ (79)
GQDs	rGO	AO	D (2 kDa)	NR	Hydroxyl, carboxyl, carbonyl	Down-shifting layer	GQDs /Ag/SiNx:H Emitter/Si wafer/BSF/Al	30.04–31.14	0.622– 0.621	0.79–0.81	14.93– 15.55	NR	30 mm s ^{−1} coating speed (corresponds to 2.25 nm GQDs)	Depends on coating speed (<i>i.e.</i> , film thickness); thinner GQD coatings showed 'improvements' that were within variability of device preparation; thicker coatings decreased transmittance; optimized coating absorbed UV light and via fluorescence converted energy to region better utilized by Si devices	⁶¹ (246)
CNDs	CA, EDA	ΗT	D (0.5 kDa)	2–8 nm	Carboxyl, hydroxyl, epoxy, amine/amide (pyridinic-N, pyrrolic-N within core)	Down-shifting layer	CNDs (in PVA)/SiNx NWs/Si wafer/electrode	29.55	0.53	0.7	10.96	NR	2.0% volume ratio CNDs spin-coated 8 times (optimized by EQE)	Optimized coating absorbed UV light and via fluorescence converted energy to region better utilized by Si devices, increasing the EQE between 300-400 nm	⁶² (247)
CQDs	Graphite Rods	EC	CRMT	NR (<10 nm from TEM)	NR; Likely hydroxy, carboxyl, epoxy	Down-shifting layer	CQDs (in PMMA)/commercial Si SC	36.49–37.32	0.617– 0.625	0.577– 0.606	13.03 ± 0.58– 14.06 ± 0.26	NR	CQDs synthesized with: 50 mA current gave highest overall PCE; 20 mA current gave largest % increase in PCE ^a	CQDs can function as modest down-shifting layers (2-5% improvements in PCE over devices without layer); performance depends on size of CQD which was influenced by applied current (10-60 mA); no correlation between CQD size and applied current was provided.	⁶³ (250)
GQDs	Oxidized	HT	D (3.5 kDa)	3–12 nm	NR; Likely	HEL/EBL	In:Ga/n-Si	26.07–33.93	0.51–0.58	0.50–0.65	7.99–	3–6 nm:	20 nm layer of 3–6 nm	Depends on GQD size (determined by length of sonication during	⁶⁴ (248)
								Page	S10						

	GSs				hydroxy, carboxyl, epoxy based on previous paper ref ⁵⁹ (60)		(methylated)/ GQDs /window of SiO₂:Au/graphene				12.35	2.96/6.56; 5–8 nm: 3.14/6.07; 6–12 nm: 3.74/6.01	GQDs	 oxidation of GSs) and layer thickness (8, 20, 50 nm; determined by volume of GQDs deposited). Due to appropriate band alignment, (1) photogenerated charge carriers diffuse to interface and are separated by built-in electric field of the heterojunction and (2) electrons prevented from transferring from Si to graphene, minimizing recombination (evidenced by increased minority carrier lifetimes). Hole transport possibly occurs via tunneling or the existence of intermediate energy levels in GQDs. Change in GQD size affects band alignment while films thinner or thicker than 20 nm result in a nonuniform GQD layer or light-blocking effects and poor conductivity, respectively. Devices showed good stability for over 6 months (in air). Doping of graphene film using HNO3 vapor improved performance of all devices 	
GQDs	Glucose	MWV	NR	2–4 nm	NR; hydroxyl, carboxyl, epoxy based on previous report	HEL dopant	Al/n-Si (top side pyramidal array)/PEDOT:PSS: GQDs /Ag	31.56–36.26	0.51–0.57	0.6223– 0.6387	10.02– 13.22	NR	0.5 wt% GQDs in PEDOT:PSS with back surface field treatment	Depends on GQD wt% (0.1, 0.3, 0.5, 0.7, or 1). Inclusion of GQDs improves optical and electrical properties due to downconversion effect and conductivity of GQDs. GQD wt% higher than 0.5 decreases minority carrier lifetime and increases recombination likely due to GQD aggregation that forms trap sites. Higher amounts can also inhibit Si light absorption. Back surface field treatment by heavily doping the Si via a thermal diffusion of POCl ₃ enhanced all device parameters for all GQD wt% (0-1%).	⁶⁵ (249)
GQDs	Glucose	MWV	NR	~3.4 nm	NR; hydroxyl, carboxyl, epoxy based on previous report	Down-shifting layer	Ag/ITO/n-type a-Si:H/a-Si:H/n- type Si (micropyramidal)/a-Si:H/p- type a-Si:H/ITO/ GQDs /Ag	36.05–37.47	0.61	0.7049– 0.7251	15.60– 16.55	NR	0.3 wt% GQDs	GQDs downconvert UV photons to visible photons, which have longer extinction distances, increasing the probability of an absorption event and reducing power losses to defect induced recombination. All GQD concentrations (0.05, 0.1, 0.3, 0.7, 1.0, 2.0 wt%) improve performance over bare device although 0.7 wt% and higher begin to show decreased J _{SC} , FF, and PCE. Authors attribute this to poorer conductivity typically associated with thicker GQD layers; however, based on the understood device architecture this should not play a role here and would more likely result from decreased transmittance due to a thicker GQD film.	⁶⁶ (251)

^aMultiple devices characterized per each condition and/or for all device architectures (including controls)

 Table S4 Bio-inspired Devices (Section 3.4)

Classification	Precursor(s)	Approach	Purification	CND Size	Surface functionality	CND role	Device architecture	J _{sc} (mA cm ^{−2})	V _{oc} (V)	FF	η (%)	Band edges (eV)	Optimized conditions	Explanation for performance	Reference
CQDs	Graphite rods	EC	FLTR/CTFG	4–30 nm	Hydroxyl, carboxyl, epoxy	Electron acceptor/don or	FTO/TiO ₂ NPs/RhB/ CQDs /I ₃ ⁻ :I ⁻ /Pt	~6.4	~0.5	NR	0.147	NR	No optimization	CQDs act as electron/energy transfer bridge between RhB and TiO2 mimicking processes involved in photosynthesis; CQDs enhanced absorbance of RhB and acted as one-way bridge, effectively separating the charge carriers and suppressing recombination.	⁶⁷ (70)
CQDs	Graphite rods	EC	СС	126 ± 8 by 77 ± 7 nm	NR; presumably oxygen containing moieties	Electron donor	Carbon paper/Thylakoid membranes/ CQDs /Si thin film	3.1 ± 0.9 (μA/cm²)	0.62 ± 0.02	NR	NR	NR	No optimization	Nanoscale dimension of CQDs (<i>i.e.</i> , increased surface area) creates more intimate contacts with the thylakoid membranes affording increased direct electron transfer; due to well-aligned absorbance and fluorescence properties, CQDs absorb unused photons and convert them to photosynthetic relevant wavelengths	⁶⁸ (75)
CQDs	Ascorbic acid, EDBE	MWV	OE	1–2 nm	Hydroxyl, carboxyl, amine	Electron donor	No device made	NR	NR	NR	NR	NR	No optimization	CQDs promoted photosynthesis by enhancing the electron transfer process; chloroplasts absorbance profile overlaps with CQDs emission profile (390 nm excitation) resulting in electron transfer from CQDs to chloroplasts	⁶⁹ (57)

Table S5 Perovskite-based Devices (Section 3.5)

Classification	Precursor(s)	Approach	Purification	CND Size	Surface functionality	CND role	Device architecture	J _{sc} (mA cm ⁻²)	V _{oc} (V)	FF	η (%)	Band edges (eV)	Optimized conditions	Explanation for performance	Reference
GQDs	Graphite rod	EC	D (3.5 kDa)	5–10 nm	Carboxyl, hydrazide (GQDs were treated with hydrazine)	Electron acceptor/don or	FTO/TiO ₂ / GQDs /CH ₃ NH ₃ PbI ₃ /Spiro -OMeTAD/Au	15.20 ± 0.78– 16.81 ± 0.83	0.909 ± 0.032– 0.917 ± 0.038	0.589 ± 0.029–0.618 ± 0.031	8.58 ± 0.54– 9.76 ± 0.58	4.2/6.8	TiO₂ loaded with 0.5 mg mL ⁻¹ GQDs³	Depends on GQD loading; GQDs act as superfast electron funnel, enhancing the electron extraction from the perovskite sensitizer to TiO ₂	⁷⁰ (80)
CQDs	CA, p- phenylenedia mine	HT	CTFG	2–4 nm	NR; likely amines, carboxyl	HEL	FTO/TiO ₂ /CH ₃ NH ₃ PbI ₃ / CQDs /Au	7.83	0.515	0.74	3	2.07/5.12	No optimization	Band alignments appropriate to ensure GQDs will efficiently transfer holes while simultaneously block electrons; Low performance attributed to non- homogenous CQD film (island-like domains of CQDs), which led to poor Ohmic contact.	⁷¹ (74)

^aMultiple devices characterized per each condition and/or for all device architectures (including controls)

Table S6 Acronym Definitions

Acronym	Full Name	Acronym	Full Name
AD	Acid dehydration	LUMO	Lowest unoccupied molecular orbital
AO	Acid oxidation	MW	Molecular weight
AUC	Analytical ultracentrifugation	MWCNTs	Multi-walled carbon nanotubes
AZO	Aluminum-doped zinc oxide	MWCO	Molecular weight cut-off
Bmim	1-Butyl-3-methylimidazolium	MWV	Microwave
BSF	Back surface field	MWV-HT	Microwave-assisted Hydrothermal
CA	Citric acid	N3	cis-Bis(isothiocyanato) bis(2,2'-bipyridyl-4,4'-dicarboxylato)ruthenium(II)
CB	Conduction band	N719	Di-tetrabutylammonium cis-bis(isothiocyanato)bis(2,2'-bipyridyl-4,4'-dicarboxylato)ruthenium(II)
CC	Column chromatography	NP	Nanoparticles
CD	Carbon dot	NR	Not reported
CE	Counter electrode	NT	Nanotubes
CF	Carbon fiber	ODA	Octadecylamine
CND	Carbon nanodot	OE	Organic extraction
CNF	Carbon nanofiber	P3HT	Poly(3-hexylthiophene)
CNP	Carbon nanoparticles	PANI	Polyaniline
CNT	Carbon nanotube	PBDTTT-C	Poly(4,8-bis-alkyloxybenzo(l,2-b:4,5-b')dithiophene-2,6-diylalt-(alkylthieno(3,4-b)thiophene-2-carboxylate)-2,6-diyl)
CQD	Carbon quantum dot	PC71BM	(6,6)-phenyl-C71 butyric acid methyl ester
CRMT	Chromatography	PCBM	(6,6)-phenyl-C61 butyric acid methyl ester
CTFG	Centrifugation	PCDTBT	Poly(N-9"-hepta-decanyl-2,7-carbazole-alt-5,5-(4',7-di-2-thienyl-2',1',3'-benzothiadiazole))
CV	Cyclic voltammetry	PCE	Power conversion efficiency
CVD	Chemical vapor deposition	p-DTS(FBTTh ₂) ₂	7,7'-(4,4-bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b']dithiophene-2,6-diyl)bis(6-fluoro-4-(5'-hexyl-[2,2'-bithiophen]-5-yl)benzo[c][1,2,5]thiadiazole)
D	Dialysis	PEDOT	poly(3,4-ethylendioxythiophene)
D719	Di-tetrabutylammonium cis-bis(isothiocyanato)bis(2,2'-bipyridyl-4,4'-dicarboxylato)ruthenium(II)	PEG	Poly(ethylene glycol)
DLS	Dynamic light scattering	PEI	Poly(ethylenimine)
EBL	Electron blocking layer	PEIE	Poly(ethylenimine) ethoxylated
EC	Electrochemical	PFO-DBT	Poly[2,7-(9,9-dioctylfluorene)-alt-4,7-bis(thiophen-2-yl)benzo-2,1,3-thiadiazole]
EDA	Ethylenediamine	PL	Photoluminescence
EDBE	2,2-(ethylenedioxy)bis(ethylamine)	PMMA	Poly(methylmethacrylate)
EQE	External quantum efficiency	РРу	Polypyrrole
FLTR	Filtration	PSS	poly(styrenesulfonate)
FRET	Förster resonance energy transfer	РТ	Polythiophene
FTO	Fluorine doped tin oxide	PTB7	Poly({4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl})
$g-C_3N_4$	Graphitic carbon nitride	PTB7-Th	Poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene-co-3-fluorothieno [3,4-b]thiophene-2-carboxylate]

C C D			
GCD	Graphitic carbon dot	PVA	
GD	Graphene dot	QD	
GIC	Graphite intercalation compound	rGO	
GNS	Graphene nanosheet	RhB	
GO	Graphene oxide	SCF	
GQD	Graphene quantum dot	SFTP	
GS	Graphene sheet	SO	
HEL	Hole extraction layer	Spiro-OMeTAD	N2,N2,N2′,N2′,N7,N7,N7′,N
HR	Hydrazine reduction	SSPPT	
HT	Hydrothermal	ST	
ICBA	Indene–C ₆₀ bisadduct	Т	
IL	Ionic liquid	TEM	
IPCE	Incident photon to conversion efficiency	TPD	N-N'-diphe
ITO	Indium doped tin oxide	Tris	
LA	Laser ablation	UF	
LPP	Long persistence phosphor	UFCT	

References

- 1. X. Yan, X. Cui, B. Li and L.-s. Li, *Nano Lett.*, 2010, **10**, 1869-1873.
- 2. X. Yan, B. Li and L.-s. Li, Acc. Chem. Res., 2013, 46, 2254–2262.
- 3. P. Mirtchev, E. J. Henderson, N. Soheilnia, C. M. Yip and G. A. Ozin, J. Mater. Chem., 2012, 22, 1265-1269.
- 4. C. Wang, X. Wu, X. Li, W. Wang, L. Wang, M. Gu and Q. Li, J. Mater. Chem., 2012, 22, 15522-15525.
- 5. M. Sun, X. Ma, X. Chen, Y. Sun, X. Cui and Y. Lin, *RSC Adv.*, 2014, **4**, 1120-1127.
- 6. L. Chen, J. Wei, C. Zhang, Z. Du, H. Li and W. Zou, *RSC Adv.*, 2014, 4, 51084-51088.
- 7. H. Zhang, Y. Wang, P. Liu, Y. Li, H. G. Yang, T. An, P.-K. Wong, D. Wang, Z. Tang and H. Zhao, *Nano Energy*, 2015, **13**, 124-130.
- 8. M. Sun, S. Qu, W. Ji, P. Jing, D. Li, L. Qin, J. Cao, H. Zhang, J. Zhao and D. Shen, *Phys. Chem. Chem. Phys.*, 2015, **17**, 7966-7971.
- 9. J. T. Margraf, F. Lodermeyer, V. Strauss, P. Haines, J. Walter, W. Peukert, R. D. Costa, T. Clark and D. M. Guldi, Nanoscale Horiz., 2016, 1, 220-226.
- 10. H. Wang, P. Sun, S. Cong, J. Wu, L. Gao, Y. Wang, X. Dai, Q. Yi and G. Zou, *Nanoscale Res. Lett.*, 2016, **11**, 1-6.
- 11. J. Yang, Q. Tang, Q. Meng, Z. Zhang, J. Li, B. He and P. Yang, J. Mater. Chem. A, 2017, 5, 2143-2150.
- 12. X. Fang, M. Li, K. Guo, J. Li, M. Pan, L. Bai, M. Luoshan and X. Zhao, *Electrochim. Acta*, 2014, **137**, 634-638.
- 13. I. Mihalache, A. Radoi, M. Mihaila, C. Munteanu, A. Marin, M. Danila, M. Kusko and C. Kusko, *Electrochim. Acta*, 2015, **153**, 306-315.
- 14. Y.-Q. Zhang, D.-K. Ma, Y.-G. Zhang, W. Chen and S.-M. Huang, *Nano Energy*, 2013, **2**, 545-552.
- 15. P. Routh, S. Das, A. Shit, P. Bairi, P. Das and A. K. Nandi, ACS Appl. Mater. Interfaces, 2013, 5, 12672-12680.
- 16. Y. Zhong, H. Zhang, D. Pan, L. Wang and X. Zhong, J. Energy Chem., 2015, 24, 722-728.
- 17. R. Zhang, B. Zhang, Y. Liu and S. Sun, *J. Mater. Chem. C*, 2016, **4**, 1633-1644.
- 18. Y. Qin, Y. Cheng, L. Jiang, X. Jin, M. Li, X. Luo, G. Liao, T. Wei and Q. Li, ACS Sustainable Chem. Eng., 2015, **3**, 637-644.
- 19. N. Maity, A. Kuila, S. Das, D. Mandal, A. Shit and A. K. Nandi, *J. Mater. Chem. A*, 2015, **3**, 20736-20748.

Polyvinyl alcohol Quantum dot Reduced graphene oxide Rhodamine B Sonochemical fenton Soft template Step-wise organic N7'-octakis(4-methoxyphenyl)-9,9'-spirobi[9H-fluorene]-2,2',7,7'-tetramine Size-selective precipitation Solvothermal Thermal Transmission electron microscopy enyl-N-N'-bix(3-methylphenyl)-1,1'-biphenyl)-4,4'-diamine 2-Amino-2-(hydroxymethyl)propane-1,3-diol Ultrafiltration Ultrafiltration centrifugal tube

- 20. Z. Salam, E. Vijayakumar, A. Subramania, N. Sivasankar and S. Mallick, *Sol. Energ. Mat. Sol. C.*, 2015, **143**, 250-259.
- 21. R. Narayanan, M. Deepa, A. K. Srivastava and S. M. Shivaprasad, *ChemPhysChem*, 2014, **15**, 1106-1115.
- 22. R. K. Kokal, P. Naresh Kumar, M. Deepa and A. K. Srivastava, J. Mater. Chem. A, 2015, **3**, 20715-20726.
- 23. E. Lee, J. Ryu and J. Jang, *Chem. Commun.*, 2013, **49**, 9995-9997.
- 24. H. Xiong, X. Zhang, B. Dong, H. Lu, L. Zhao, L. Wan, G. Dai and S. Wang, *Electrochim. Acta*, 2013, 88, 100-106.
- 25. L. Chen, C. X. Guo, Q. Zhang, Y. Lei, J. Xie, S. Ee, G. Guai, Q. Song and C. M. Li, ACS Appl. Mater. Interfaces, 2013, 5, 2047-2052.
- 26. C.-P. Lee, C.-A. Lin, T.-C. Wei, M.-L. Tsai, Y. Meng, C.-T. Li, K.-C. Ho, C.-I. Wu, S.-P. Lau and J.-H. He, *Nano Energy*, 2015, **18**, 109-117.
- 27. C.-C. Wang and S.-Y. Lu, *Nanoscale*, 2015, **7**, 1209-1215.
- 28. K. Lee, S. Cho, M. Kim, J. Kim, J. Ryu, K.-Y. Shin and J. Jang, J. Mater. Chem. A, 2015, **3**, 19018-19026.
- 29. M. Dinari, M. M. Momeni and M. Goudarzirad, J. Mater. Sci., 2016, **51**, 2964-2971.
- 30. V. Gupta, N. Chaudhary, R. Srivastava, G. D. Sharma, R. Bhardwaj and S. Chand, J. Am. Chem. Soc., 2011, **133**, 9960-9963.
- 31. Y. Li, Y. Hu, Y. Zhao, G. Shi, L. Deng, Y. Hou and L. Qu, *Adv. Mater.*, 2011, **23**, 776-780.
- 32. J. K. Kim, M. J. Park, S. J. Kim, D. H. Wang, S. P. Cho, S. Bae, J. H. Park and B. H. Hong, ACS Nano, 2013, 7, 7207-7212.
- 33. W. Kwon, G. Lee, S. Do, T. Joo and S.-W. Rhee, *Small*, 2014, **10**, 506-513.
- 34. R. Sharma, F. Alam, A. K. Sharma, V. Dutta and S. K. Dhawan, *J. Mater. Chem. A*, 2015, **3**, 22227-22238.
- 35. F. Li, L. Kou, W. Chen, C. Wu and T. Guo, *NPG Asia Mater.*, 2013, **5**, e60.
- 36. Y. Dang, X. Zhang, X. Chen, B. Kang and S. R. P. Silva, *RSC Adv.*, 2016, **6**, 110493-110498.
- 37. D. H. Wang, J. K. Kim, S. Jin Kim, B. Hee Hong and J. H. Park, *Nanoscale*, 2014, **6**, 15175-15180.
- 38. C. Liu, K. Chang, W. Guo, H. Li, L. Shen, W. Chen and D. Yan, *Appl. Phys. Lett.*, 2014, **105**, 073306.
- 39. X. Zhang, Z. Li, Z. Zhang, C. Liu, J. Li, W. Guo and S. Qu, ACS Sustainable Chem. Eng., 2016, 4, 2359-2365.
- 40. T. G. Novak, J. Kim, S. H. Song, G. H. Jun, H. Kim, M. S. Jeong and S. Jeon, *Small*, 2016, **12**, 994-999.
- 41. F.-J. Zou, S.-D. Fan, Q. Xie, Y. Sun, L.-J. Sun, Z.-G. Li and L.-J. Wang, *Chin. J. Lumin.*, 2016, **37**, 1082-1089.
- 42. X. Chen, Q. Liu, Q. Wu, P. Du, J. Zhu, S. Dai and S. Yang, *Adv. Funct. Mater.*, 2016, **26**, 1719-1728.
- 43. B. J. Moon, Y. Oh, D. H. Shin, S. J. Kim, S. H. Lee, T.-W. Kim, M. Park and S. Bae, *Chem. Mater.*, 2016, **28**, 1481-1488.
- 44. J. K. Kim, S. J. Kim, M. J. Park, S. Bae, S.-P. Cho, Q. G. Du, D. H. Wang, J. H. Park and B. H. Hong, Sci. Rep., 2015, 5, 14276.
- 45. M. Li, W. Ni, B. Kan, X. Wan, L. Zhang, Q. Zhang, G. Long, Y. Zuo and Y. Chen, *Phys. Chem. Chem. Phys.*, 2013, **15**, 18973-18978.
- 46. Z. Ding, Z. Hao, B. Meng, Z. Xie, J. Liu and L. Dai, *Nano Energy*, 2015, **15**, 186-192.
- 47. H. C. Lim, S. H. Min, E. Lee, J. Jang, S. H. Kim and J.-I. Hong, ACS Appl. Mater. Interfaces, 2015, 7, 11069-11073.
- 48. X. Zhang, Z. Li, Z. Zhang, S. Li, C. Liu, W. Guo, L. Shen, S. Wen, S. Qu and S. Ruan, *J. Phys. Chem. C*, 2016, **120**, 13954-13962.
- 49. H. Zhang, Q. Zhang, M. Li, B. Kan, W. Ni, Y. Wang, X. Yang, C. Du, X. Wan and Y. Chen, J. Mater. Chem. C, 2015, **3**, 12403-12409.
- 50. L. Yan, Y. Yang, C.-Q. Ma, X. Liu, H. Wang and B. Xu, *Carbon*, 2016, **109**, 598-607.
- 51. Z. Ding, Z. Miao, Z. Xie and J. Liu, *J. Mater. Chem. A*, 2016, **4**, 2413-2418.
- 52. N. T. Ho, H. N. Tien, S.-J. Jang, V. Senthilkumar, Y. C. Park, S. Cho and Y. S. Kim, *Sci. Rep.*, 2016, **6**, 30327.
- 53. H. B. Yang, Y. Q. Dong, X. Wang, S. Y. Khoo, B. Liu and C. M. Li, Sol. Energ. Mat. Sol. C., 2013, 117, 214-218.
- 54. H. B. Yang, Y. Q. Dong, X. Wang, S. Y. Khoo and B. Liu, *ACS Appl. Mater. Interfaces*, 2013, **6**, 1092-1099.
- 55. X. Zhang, Z. Li, Z. Zhang, C. Liu, J. Li, W. Guo, L. Shen and S. Qu, *Org. Electron.*, 2016, **33**, 62-70.
- 56. M. Dutta, S. Sarkar, T. Ghosh and D. Basak, *J. Phys. Chem. C*, 2012, **116**, 20127-20131.
- 57. J. Briscoe, A. Marinovic, M. Sevilla, S. Dunn and M. Titirici, *Angew. Chem. Int. Ed.*, 2015, **54**, 4463-4468.

- 58. R. Narayanan, M. Deepa and A. K. Srivastava, J. Mater. Chem. A, 2013, 1, 3907-3918.
- 59. P. Gao, K. Ding, Y. Wang, K. Ruan, S. Diao, Q. Zhang, B. Sun and J. Jie, *J. Phys. Chem. C*, 2014, **118**, 5164-5171.
- 60. C. Xie, B. Nie, L. Zeng, F.-X. Liang, M.-Z. Wang, L. Luo, M. Feng, Y. Yu, C.-Y. Wu, Y. Wu and S.-H. Yu, ACS Nano, 2014, 8, 4015-4022.
- 61. K. D. Lee, M. J. Park, D.-Y. Kim, S. M. Kim, B. Kang, S. Kim, H. Kim, H.-S. Lee, Y. Kang, S. S. Yoon, B. H. Hong and D. Kim, ACS Appl. Mater. Interfaces, 2015, 7, 19043-19049.
- 62. X. Han, S. Zhong, W. Pan and W. Shen, *Nanotechnology*, 2015, **26**, 065402.
- 63. E. Pelayo, A. Zazueta, R. Lopez, E. Saucedo, R. Ruelas and A. Ayon, *Mater. Renew. Sustain. Energy*, 2016, 5, 5.
- 64. S. Diao, X. Zhang, Z. Shao, K. Ding, J. Jie and X. Zhang, *Nano Energy*, 2017, **31**, 359-366.
- 65. M.-L. Tsai, W.-R. Wei, L. Tang, H.-C. Chang, S.-H. Tai, P.-K. Yang, S. P. Lau, L.-J. Chen and J.-H. He, ACS Nano, 2016, **10**, 815-821.
- 66. M.-L. Tsai, W.-C. Tu, L. Tang, T.-C. Wei, W.-R. Wei, S. P. Lau, L.-J. Chen and J.-H. He, *Nano Lett.*, 2016, **16**, 309-313.
- 67. Z. Ma, Y.-L. Zhang, L. Wang, H. Ming, H. Li, X. Zhang, F. Wang, Y. Liu, Z. Kang and S.-T. Lee, ACS Appl. Mater. Interfaces, 2013, 5, 5080-5084.
- 68. M. Rasmussen, A. Wingersky and S. D. Minteer, *ECS Electrochem. Lett.*, 2014, **3**, H1-H3.
- 69. S. Chandra, S. Pradhan, S. Mitra, P. Patra, A. Bhattacharya, P. Pramanik and A. Goswami, *Nanoscale*, 2014, **6**, 3647-3655.
- 70. Z. Zhu, J. Ma, Z. Wang, C. Mu, Z. Fan, L. Du, Y. Bai, L. Fan, H. Yan, D. L. Phillips and S. Yang, J. Am. Chem. Soc., 2014, **136**, 3760-3763.
- 71. S. Paulo, G. Stoica, W. Cambarau, E. Martinez-Ferrero and E. Palomares, *Synth. Met.*, 2016, **222, Part A**, 17-22.