Electronic Supplementary Information (ESI)

Luca Pagano,^{a,b,c} Francesco Pasquali,^a Sanghamitra Majumdar,^c Roberto De la Torre-Roche,^c Nubia Zuverza-Mena,^c Marco Villani,^d Andrea Zappettini,^d Robert E. Marra,^c Susan M. Isch,^e Marta Marmiroli,^a Elena Maestri,^a Om Parkash Dhankher,^b Jason C. White,^{c,†} Nelson Marmiroli.^{c,†}

a- Dept. Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy

b- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, USA

c- The Connecticut Agricultural Experiment Station, New Haven, CT, USA

d- IMEM-CNR, Parma, Italy

e-Dr. Katherine A. Kelley State Public Health Laboratory, Rocky Hill, CT, USA

+, J.C.W. address: The Connecticut Agricultural Experiment Station, 123 Huntington St. 06504 New Haven, CT. phone: +1 (203) 974-8523; fax: +1 (203) 974-8502; e-mail: Jason.White@ct.gov

+, N.M. address: Dept. Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma (IT). phone: +39 0521905606; fax: +39 0521
906222; e-mail: nelson.marmiroli@unipr.it

Supplementary tables:

Table S1: Genes' information.

Table S2: ZnO NPs/bulk and CdS QDs/bulk biomass, moisture content and root/shoot length.
Table S3: NMCT biomass, moisture content and root/shoot length.
Table S4: Calculation of biomass differential effect (BDE) index for BMTs and NMCTs.
Table S5: Tukey's (HSD) pairwise multiple comparisons related to NMCTs metal content.
Table S6: Tukey's (HSD) pairwise multiple comparisons related to Zn and Cd metal content.
Table S7: Specific Extraction Yield Percentage of NMCTs.
Table S8: ENM specific genes (univocal and non-univocal) highlighted in qPCR experiments.
Table S9: Additional references of genes cited in the text.

Supplementary figures:

Figure S1-S3: S/TEM-EDX images of NMs used in the study.

Figure S4: NMCT photosynthetic efficiency and cell viability assays.

Figure S5: Graphical dispersion of Effect enhancement index values.

Figure S6-S7: Metal content data of Zn and Cd uptake after ZnO NP and bulk and CdS QD and bulk treatment (NMIT).

Figure S8: Heatmap and Venn diagram of the comparison between CdS QDs treatment in *A*. *thaliana* and *C. pepo* (zucchini).

Figure S9: Heatmap of the comparison between all NMCTs and NMITs.

Figure S10: Heatmap and PCA of the comparison between the NM/bulk treatments.

Figure S11-S15: Heatmap, chord diagram and PCA of the comparison between all ENM individual treatments (NMITs) and binary treatments (NMCTs).

Figure S16: Network of interaction of univocal and non-univocal genes

Figure S1: XRD pattern of as-grown CdS QDs. Green lines refer to hexagonal CdS (greenockite) as reported in JCPDS no. 80-0006.

Figure S2: S/TEM (a) and HREM (b) image of as-synthesized CdS QDs.

Figure S3: TEM image of ZnO NPs. TEM images related to CeO_2 , La_2O_3 and CuO NPs are reported from in Pagano *et al.* (2016).¹

Table S1: List of the 38 C. pepo genes used in the study (primer sequences used reported in Pagano

et. al., 2016).¹

ref	GeneID A. thaliana	GeneID C. pepo	gene name/function
005u	At1g09080	CUTC002577	BIP3, Heat shock protein 70 (Hsp 70) family protein
008u	At1g11190	CUTC008849	BFN1, ENDO1, bifunctional nuclease i
013u	At1g23730	CUTC008070	ATBCA3, BCA3, beta carbonic anhydrase 3
026u	At1g61800	CUTC007694	ATGPT2, GPT2, glucose-6-phosphate/phosphate translocator 2
032u	At1g69120	CUTC012366	AGL7, AP1, K-box region and MADS-box transcription factor family protein
046u	At2g21640	CUTC018024	Encodes a protein of unknown function that is a marker for oxidative stress response.
048u	At2g23030	CUTC008834	SNRK2-9, SNRK2.9, SNF1-related protein kinase 2.9
051u	At2g26560	CUTC012732	PLA IIA, PLA2A, PLP2, PLP2, phospholipase A 2A
066u	At3g02310	CUTC014559	AGL4, SEP2, K-box region and MADS-box transcription factor family protein
070u	At3g08860	CUTC004179	PYD4, PYRIMIDINE 4
071u	At3g12520	CUTC007045	SULTR4;2, sulfate transporter 4;2
083u	At3g54340	CUTC014559	AGL4, SEP2, K-box region and MADS-box transcription factor family protein
086u	At3g59845	CUTC001470	Zinc-binding dehydrogenase family protein
090u	At4g04460	CUTC002381	PASPA3, Saposin-like aspartyl protease family protein
093u	At4g12280	CUTC008356	copper amine oxidase family protein
098u	At4g16370	CUTC009101	ATOPT3, OPT3, OPT3, oligopeptide transporter
099u	At4g21680	CUTC041648	NRT1.8, NITRATE TRANSPORTER 1.8
119u	At5g20240	CUTC042444	PI, K-box region and MADS-box transcription factor family protein
124u	At5g24470	CUTC023690	APRR5, PRR5, pseudo-response regulator 5
127u	At5g26220	CUTC045405	GGCT2;1, ChaC-like family protein
128u	At5g26340	CUTC013905	ATSTP13, MSS1, STP13, Major facilitator superfamily protein
139u	At5g48850	CUTC039723	ATSDI1, Tetratricopeptide repeat (TPR)-like superfamily protein
140u	At5g50260	CUTC003431	CEP1, Cysteine proteinases superfamily protein
143u	At5g54960	CUTC034909	PDC2, pyruvate decarboxylase-2
147u	At5g61380	CUTC019875	APRR1, AtTOC1, PRR1, TOC1, CCT motif -containing response regulator protein
150u	AtCg00065	CUTC021188	RPS12, RPS12A, ribosomal protein S12A
151u	AtCg00360	CUTC004189	YCF3, Tetratricopeptide repeat (TPR)-like superfamily protein
152u	AtCg00590	CUTC036811	ORF31, chloroplastic electron carriers
155u	AtCg00700	CUTC045946	PSBN, photosystem II reaction center protein N

ref	GeneID A. thaliana	GeneID C. pepo	gene name/function
001d	At1g01060	CUTC042801	LHY, LHY1, Homeodomain-like superfamily protein
002d	At1g08830	CUTC000155	CSD1, copper/zinc superoxide dismutase 1
004d	At1g12520	CUTC013469	ATCCS, CCS, copper chaperone for SOD1
008d	At1g29660	CUTC012295	GDSL-like Lipase/Acylhydrolase superfamily protein
011d	At1g73010	CUTC016360	ATPS2, PS2, phosphate starvation-induced gene 2
016d	At2g11810	CUTC015342	ATMGD3, MGD3, MGDC, monogalactosyldiacylglycerol synthase type C
018d	At2g28190	CUTC015722	CSD2, CZSOD2, copper/zinc superoxide dismutase 2
036d	At5g01600	CUTC001028	ATFER1, FER1, ferretin 1
037d	At5g02540	CUTC012876	NAD(P)-binding Rossmann-fold superfamily protein
043d	At5g43350	CUTC049068	ATPT1, PHT1;1, phosphate transporter 1;1
045d	At5g43780	CUTC008032	APS4, Pseudouridine synthase/archaeosine transglycosylase-like family protein

Table S2: ZnO NP and bulk and CdS QD and bulk biomass (a), moisture content (b) and root/shoot length (c) and relative Tukey's (HSD) pairwise multiple comparisons (p < 0.05); <u>A</u> represents always the lowest mean. ZnO bulk and CdS QD treatment biomass, as well as leaf moisture content of ZnO bulk and root length for CdS bulk, were significantly reduced as compared with the control untreated.

a. Biomass (g)

sample	biomass	stdev	%	HS	SD
untreated	4.054	0.610	100.0	В	AB
ZnO NPs	4.640	0.537	114.5	-	В
ZnO bulk	2.134	0.459	52.6	-	А
CdS QDs	2.762	0.280	68.1	А	-
CdS bulk	3.340	0.576	82.4	AB	-

b. Moisture content (g/g)

sample	leaves	st dev	Н	SD	stems	st dev	HS	SD	roots	st dev	HS	SD
untreated	19.239	7.008	А	AB	0.972	0.021	А	А	44.333	24.066	А	А
ZnO NPs	19.079	1.253	-	А	0.970	0.006	-	А	43.133	23.879	-	А
ZnO bulk	35.200	12.849	-	В	0.986	0.003	-	А	34.600	10.526	-	А
CdS QDs	25.448	5.555	А	-	0.977	0.011	А	-	31.200	9.358	А	-
CdS bulk	23.712	3.775	А	-	0.977	0.005	А	-	49.400	11.739	А	-

c. Length (cm)

sample	shoots	st dev	HS	SD	roots	st dev	HS	D
untreated	18.340	3.669	А	А	24.000	6.255	AB	А
ZnO NPs	18.580	3.979	-	А	33.160	2.530	-	А
ZnO bulk	14.560	2.317	-	А	24.580	6.940	-	А
CdS QDs	16.200	0.967	А	-	22.580	4.115	А	-
CdS bulk	18.620	2.435	А	-	32.000	5.962	В	-

Table S3: Nanomaterial combined treatment (NMCT) biomass (a), moisture content (b) and root/shoot length (c) and relative Tukey's (HSD) pairwise multiple comparisons (p < 0.05); <u>A</u> represents always the lowest mean.

a. Biomass (g)

sample	biomass	st dev	%	HSD
untreated	2.858	0.671	100.0	AB
$CeO_2 NPs + La_2O_3 NPs$	3.542	0.821	123.9	AB
CeO ₂ NPs + CuO NPs	4.174	1.065	146.0	В
CeO ₂ NPs + ZnO NPs	3.566	0.724	124.8	AB
CeO ₂ NPs + CdS QDs	2.188	0.564	76.6	А
La ₂ O ₃ NPs + CuO NPs	2.960	0.275	103.6	AB
La ₂ O ₃ NPs + ZnO NPs	3.938	0.774	137.8	В
La ₂ O ₃ NPs + CdS QDs	3.624	1.082	126.8	AB
CuO NPs + ZnO NPs	3.412	0.935	119.4	AB
CuO NPs + CdS QDs	2.540	0.824	88.9	AB
ZnO NPs + CdS QDs	3.096	0.379	108.3	AB

b. Moisture content (g/g)

sample	leaves	st dev	HSD	stems	st dev	HSD	roots	st dev	HSD
untreated	22.300	5.975	AB	0.971	0.003	А	0.944	0.017	А
$CeO_2 NPs + La_2O_3 NPs$	19.790	11.338	AB	0.963	0.005	А	0.953	0.013	А
CeO ₂ NPs + CuO NPs	12.577	1.668	А	0.950	0.010	А	0.946	0.008	А
CeO ₂ NPs + ZnO NPs	26.195	6.320	AB	0.977	0.009	А	0.968	0.014	А
$CeO_2 NPs + CdS QDs$	24.558	12.392	AB	0.982	0.008	А	0.970	0.004	А
La ₂ O ₃ NPs + CuO NPs	41.633	23.288	В	0.987	0.009	А	0.981	0.003	А
$La_2O_3 NPs + ZnO NPs$	20.988	5.749	AB	0.972	0.004	А	0.973	0.007	А
$La_2O_3 NPs + CdS QDs$	26.678	11.100	AB	0.978	0.006	А	0.974	0.010	А
CuO NPs + ZnO NPs	29.327	7.102	В	0.978	0.010	А	0.977	0.009	А
CuO NPs + CdS QDs	19.973	6.575	AB	0.978	0.004	А	0.954	0.011	А
ZnO NPs + CdS QDs	38.150	17.966	В	0.976	0.006	А	0.978	0.006	А

c. Length (cm)

shoots	st dev	HSD	roots	st dev	HSD
16.060	1.220	AB	29.720	7.650	А
18.980	2.070	BC	29.740	5.700	А
18.800	1.680	BC	31.800	3.270	А
18.160	1.180	AB	25.620	4.470	А
14.840	0.970	А	24.660	5.790	А
17.860	2.830	BC	26.540	2.840	А
20.440	1.970	С	30.120	5.630	А
19.460	2.280	BC	25.920	2.360	А
19.540	1.260	BC	28.120	8.550	А
17.240	1.370	BC	24.300	4.520	А
16.660	1.460	AB	23.500	2.760	А
	shoots 16.060 18.980 18.160 14.840 17.860 20.440 19.460 17.240 16.660	shootsst dev16.0601.22018.9802.07018.8001.68018.1601.18014.8400.97017.8602.83020.4401.97019.4602.28019.5401.26017.2401.37016.6601.460	shootsst devHSD16.0601.220AB18.9802.070BC18.8001.680BC18.1601.180AB14.8400.970A17.8602.830BC20.4401.970C19.4602.280BC17.2401.370BC16.6601.460AB	shootsst devHSDroots16.0601.220AB29.72018.9802.070BC29.74018.8001.680BC31.80018.1601.180AB25.62014.8400.970A24.66017.8602.830BC26.54020.4401.970C30.12019.4602.280BC25.92019.5401.260BC28.12017.2401.370BC24.30016.6601.460AB23.500	shootsst devHSDrootsst dev16.0601.220AB29.7207.65018.9802.070BC29.7405.70018.8001.680BC31.8003.27018.1601.180AB25.6204.47014.8400.970A24.6605.79017.8602.830BC26.5402.84020.4401.970C30.1205.63019.4602.280BC25.9202.36019.5401.260BC28.1208.55017.2401.370BC24.3004.52016.6601.460AB23.5002.760

Figure S4: Nanomaterial combined treatment (NMCT) photosynthetic efficiency, expressed as absorbance of chlorophyll *a* (662 nm), *b* (645 nm) and carotenoids (470 nm), and cell viability, as absorbance of formazan (530 nm) derived from the TTC reduction. No significant differences between the control (untreated) and the treatments are evident, except in the case of formazan (CuO+ZnO NP treatment; t-test: *, p < 0.05; **, p < 00.1; ***, p < 000.1).

Biomass Differential Effect (BDE) index – Equations:

- (α) Index _{BMT} = biomass _{bulk} / biomass _{control}
- (β) Index _{NMCT} = biomass _{NMCT} / biomass _{control}
- (λ) Index _{NMIT} = biomass _{NMIT} / biomass _{control}
- (δ) BDE_{BMT} = Index _{BMT} / Index _{NMIT}
- (ϵ) BDE_{NMCT} = Index _{NMCT} / Index _{NMIT}

Table S4: Tables (a) report values for equation (α), (b) for equation (β), (c) for equation (λ), (d) for equation (δ), (e) for equation (ϵ). Calculation of the Biomass Differential Effect (BDE) index for BMTs and NMCTs follow the equations reported. References reported in S5d,e represent the different materials CeO₂ NPs (A), CeO₂ bulk (bA), La₂O₃ NPs (B), La₂O₃ bulk (bB), CuO NPs (C), CuO (bC), ZnO NPs (D), ZnO bulk (bD), CdS QDs (E), CdS (bE) and their combinations, respectively.

(a)	BMT	Index BMT
	CeO ₂ bulk	1.24753
	La ₂ O ₃ bulk	0.96476
	CuO bulk	0.88612
	ZnO bulk	0.52639
	CdS bulk	0.82388

(b)	NMIT	index _{NMIT}
	CeO ₂ NPs	1.30926
	La ₂ O ₃ NPs	1.18080
	CuO NPs	0.91275
	ZnO NPs	1.14455
	CdS QDs	0.68130

(c)	NMCT	Index _{NMCT}
	CeO ₂ NPs + La ₂ O ₃ NPs	1.23933
	CeO ₂ NPs + CuO NPs	1.46046
	CeO ₂ NPs + ZnO NPs	1.24773
	CeO ₂ NPs + CdS QDs	0.76557
	La ₂ O ₃ NPs + CuO NPs	1.03569
	$La_2O_3 NPs + ZnO NPs$	1.37789
	La ₂ O ₃ NPs + CdS QDs	1.26802
	CuO NPs + ZnO NPs	1.19384
	CuO NPs + CdS QDs	0.88873
	ZnO NPs + CdS QDs	1.08328

(d)	ref	BMT	NMIT	BDE _{BMT}
	bA vs A	CeO ₂	CeO ₂ NPs	1.04948
	bB vs B	La_2O_3	La ₂ O ₃ NPs	1.22393
	bC vs C	CuO	CuO NPs	1.03005
	bD vs D	ZnO	ZnO NPs	2.17432
	bE vs E	CdS	CdS QDs	0.82695

(e)	ref	NMCT	NMIT	BDE _{NMCT}
	AB vs A	$CeO_2 NPs + La_2O_3 NPs$		1.05643
	AC vs A	CeO ₂ NPs + CuO NPs	CeO ₂ NPs	0.89647
	AD vs A	CeO ₂ NPs + ZnO NPs		1.04932
	AE vs A	$CeO_2 NPs + CdS QDs$		1.71017
	AB vs B	CeO ₂ NPs + La ₂ O ₃ NPs		0.95278
	BC vs B	La ₂ O ₃ NPs + CuO NPs	LaoOo NPs	1.14011
	BD vs B	La ₂ O ₃ NPs + ZnO NPs	La ₂ O ₃ NI 3	0.85697
	BE vs E	La ₂ O ₃ NPs + CdS QDs		0.93122
	AC vs C	$CeO_2 NPs + CuO NPs$		0.62497
	BC vs C	La ₂ O ₃ NPs + CuO NPs	CuO NPs	0.88130
	CD vs C	CuO NPs + ZnO NPs	euo mis	0.76455
	CE vs E	CuO NPs + CdS QDs		1.02702
	AD vs D	CeO ₂ NPs + ZnO NPs		0.91731
	BD vs D	La ₂ O ₃ NPs + ZnO NPs	ZnO NPs	0.83066
	CD vs D	CuO NPs + ZnO NPs		0.95871
	DE vs D	ZnO NPs + CdS QDs		1.05656
	AE vs E	$CeO_2 NPs + CdS QDs$		0.88993
	BE vs E La ₂ O ₃	$La_2O_3 NPs + CdS QDs$	CdS ODs	0.53730
	CE vs E	CuO NPs + CdS QDs		0.76660
	DE vs E	ZnO NPs + CdS QDs		0.62893

Figure S5: Graphical dispersion of the Biomass Differential Effect (BDE) index values for BMTs and NMCTs, calculated on biomass data and normalized on the untreated control, as described in Table S5. Red and blue are reported the BDE_{BMT} (following Table S5d) and BDE_{NMCT} (following Table S5e), respectively. BDE >1, the effect of the BMT or NMCT is dominant to the NMIT; BDE <1, the effect of the NMIT is dominant to the BMT or NMCT treatment. Letters reported in S8d,e represent the different materials CeO₂ NPs (A), CeO₂ bulk (bA), La₂O₃ NPs (B), La₂O₃ bulk (bB), CuO NPs (C), CuO (bC), ZnO NPs (D), ZnO bulk (bD), CdS QDs (E), CdS (bE) and their combinations. The example of CdS QDs (NMCT vs NMIT) is emblematic: in all the indexes related to NMCT that contained CdS QDs (ratios below 1), highlighting how the strongest effect was due to CdS QDs for each binary combination. On the other hand, in the case of CeO₂ NP, when combined with CdS QDs, gave opposite result (ratio higher than 1). The combination of CeO2 NP + CdS QD was more effective than the CeO2 NPs alone, suggesting that CdS QDs were more influential than the CeO2 NPs.

Figure S6: Zn concentrations, expressed in mg kg⁻¹, of ZnO NP and ZnO bulk (500 mg L⁻¹) and relative Tukey's (HSD) pairwise multiple comparisons (p < 0.05); <u>A</u> represents always the lowest mean.

Figure S7: Cd concentrations, expressed in mg kg⁻¹, of CdS QD and CdS bulk (100 mg L⁻¹) and relative Tukey's (HSD) pairwise multiple comparisons (p < 0.05); <u>A</u> represents always the lowest mean.

Table S5: Tukey's (HSD) pairwise multiple comparisons (p < 0.05) related to Ce, La, Cu, Zn and Cd uptake of NMCTs in leaves (a), stems (b) and roots (c) (data reported in Figure 1); <u>A</u> represents always the lowest mean.

a. Metal content - Leaves	Ce	La	Cu	Zn	Cd
untreated	А	А	А	AB	А
$CeO_2 NPs + La_2O_3 NPs$	А	А	BC	В	А
$CeO_2 NPs + CuO NPs$	А	А	BC	В	А
CeO ₂ NPs + ZnO NPs	А	А	BC	С	А
$CeO_2 NPs + CdS QDs$	А	А	AB	AB	А
$La_2O_3 NPs + CuO NPs$	А	А	BC	В	А
$La_2O_3 NPs + ZnO NPs$	А	А	AB	С	А
La_2O_3 NPs + CdS QDs	А	А	AB	AB	А
CuO NPs + ZnO NPs	А	А	AB	С	А
CuO NPs + CdS QDs	А	А	А	А	В
ZnO NPs + CdS QDs	А	А	А	С	В

b. Metal content - Stems	Ce	La	Cu	Zn	Cd
untreated	А	А	А	А	А
$CeO_2 NPs + La_2O_3 NPs$	BC	С	В	В	А
CeO ₂ NPs + CuO NPs	С	А	BC	В	Α
$CeO_2 NPs + ZnO NPs$	AB	А	BC	С	Α
CeO ₂ NPs + CdS QDs	С	А	В	AB	BC
$La_2O_3 NPs + CuO NPs$	А	D	BC	В	Α
$La_2O_3 NPs + ZnO NPs$	А	В	А	CD	Α
$La_2O_3 NPs + CdS QDs$	А	AB	А	А	В
CuO NPs + ZnO NPs	А	А	AB	CD	Α
CuO NPs + CdS QDs	А	А	А	А	С
ZnO NPs + CdS QDs	А	А	А	D	В

c. Metal content - Roots	Ce	La	Cu	Zn	Cd
untreated	А	А	AB	AB	А
$CeO_2 NPs + La_2O_3 NPs$	В	В	А	А	А
CeO ₂ NPs + CuO NPs	С	А	С	В	А
CeO ₂ NPs + ZnO NPs	В	А	В	D	А
CeO ₂ NPs + CdS QDs	В	А	BC	BC	В
La ₂ O ₃ NPs + CuO NPs	А	С	D	С	А
La ₂ O ₃ NPs + ZnO NPs	А	С	В	D	А
La ₂ O ₃ NPs + CdS QDs	А	С	BC	BC	В
CuO NPs + ZnO NPs	А	А	С	D	А
CuO NPs + CdS QDs	А	А	С	BC	В
ZnO NPs + CdS QDs	А	А	BC	D	В

Table S6: Tukey's (HSD) pairwise multiple comparisons (p < 0.05) related to Zn (a) and Cd (b) uptake of NMCT compared to the individual treatment in leaves, stems, and roots. <u>A</u> represents always the lowest mean.

a. Metal content Zn	leaves	stems	roots
ZnO NPs	А	В	В
CeO ₂ NPs + ZnO NPs	А	В	А
La ₂ O ₃ NPs + ZnO NPs	А	AB	А
CuO NPs + ZnO NPs	А	AB	А
ZnO NPs + CdS QDs	А	А	А
b. Metal content Cd	leaves	stems	roots
CdS QDs	A	В	В
$CeO_2 NPs + CdS QDs$	А	AB	А
La ₂ O ₃ NPs + CdS QDs	А	А	А
CuO NPs + CdS QDs	А	AB	AB
ZnO NPs + CdS QDs	А	А	А

Specific Extraction Yield (SEY%) index – Equation:

(ζ) SEY_% = M _{plant} / [M _{soil}]

Equation (ζ) represents the SEY_% in the plants calculated on the ratio between M _{plant} (metal content in the different part of the plants), reported in Figure 1 and the metal concentration ([M _{soil}]) used in the experiment.

Table S7: Specific Extraction Yield Percentage (SEY_%) of Ce, La, Cu, Zn and Cd derived from metal content data of NMCTs, calculated in equation (ζ), following Audet and Charest, 2007.² Values not reported were lower than 0.01%.

a. SEY _% - Leaves	Ce	La	Cu	Zn	Cd
untreated	-	-	0.04%	0.15%	-
$CeO_2 NPs + La_2O_3 NPs$	-	0.01%	0.04%	0.18%	-
CeO ₂ NPs + CuO NPs	-	-	0.05%	0.13%	-
CeO ₂ NPs + ZnO NPs	-	-	0.07%	2.05%	-
CeO ₂ NPs + CdS QDs	-	-	0.13%	0.56%	0.08%
La ₂ O ₃ NPs + CuO NPs	-	0.05%	0.18%	0.69%	-
$La_2O_3 NPs + ZnO NPs$	-	0.02%	0.04%	1.67%	-
La ₂ O ₃ NPs + CdS QDs	-	-	0.03%	0.15%	0.02%
CuO NPs + ZnO NPs	-	-	0.05%	2.70%	-
CuO NPs + CdS QDs	-	-	0.04%	0.16%	0.12%
ZnO NPs + CdS QDs	-	-	0.04%	2.43%	0.19%

b. SEY _% - Stems	Ce	La	Cu	Zn	Cd
untreated	-	-	0.04%	0.19%	-
$CeO_2 NPs + La_2O_3 NPs$	0.08%	0.06%	0.04%	0.24%	-
CeO ₂ NPs + CuO NPs	0.07%	-	0.05%	0.17%	-
CeO ₂ NPs + ZnO NPs	0.03%	-	0.06%	5.90%	-
CeO ₂ NPs + CdS QDs	0.69%	-	0.18%	1.03%	4.23%
La ₂ O ₃ NPs + CuO NPs	-	0.36%	0.23%	1.06%	-
La ₂ O ₃ NPs + ZnO NPs	-	0.02%	0.02%	2.72%	-
La ₂ O ₃ NPs + CdS QDs	-	0.01%	0.03%	0.17%	0.78%
CuO NPs + ZnO NPs	-	-	0.06%	5.26%	-
CuO NPs + CdS QDs	-	-	0.07%	0.20%	3.62%
ZnO NPs + CdS QDs	-	-	0.04%	4.12%	1.14%

c. SEY _% - Roots	Ce	La	Cu	Zn	Cd
untreated	-	-	0.23%	0.28%	0.01%
$CeO_2 NPs + La_2O_3 NPs$	1.50%	2.09%	0.09%	0.15%	0.01%
CeO ₂ NPs + CuO NPs	1.74%	-	0.61%	0.28%	-
CeO ₂ NPs + ZnO NPs	3.06%	-	0.35%	16.00%	-
CeO ₂ NPs + CdS QDs	9.05%	-	0.68%	1.70%	61.83%
La ₂ O ₃ NPs + CuO NPs	-	16.92%	3.41%	1.49%	-
$La_2O_3 NPs + ZnO NPs$	-	4.16%	0.17%	8.18%	-
$La_2O_3 NPs + CdS QDs$	-	10.46%	0.29%	0.83%	20.08%
CuO NPs + ZnO NPs	-	-	0.87%	15.14%	-
CuO NPs + CdS QDs	-	-	0.90%	0.73%	33.46%
ZnO NPs + CdS QDs	-	-	0.35%	18.49%	33.00%

b

Figure S8: Heatmap (a) and Venn diagram (b) of CdS QD treatment in *A. thaliana* (At), from Marmiroli *et al.* (2014),³ and *Cucurbita pepo* (Cp). Genes up- (red) and down-regulated (green) for both the species are reported.

Figure S9: Heatmap of the comparison between the nanoparticle treatments in *Cucurbita pepo* (NP CeO₂, La₂O₃ and CuO results are reported from Pagano *et. al* (2016).¹ Genes up- (red) and down-regulated (green) are reported in the heatmap.

	Comp.1	Comp.2	Comp.3	Comp.4	Comp.5	Comp.6
Standard deviation	2.0940	1.7173	1.2461	0.89160	0.41777	0.37963
Proportion of Variance	0.4385	0.2949	0.1553	0.07949	0.01745	0.01441
Cumulative Proportion	0.4385	0.7334	0.8886	0.96813	0.98559	1.00000
	Com	0.7				
Standard deviation	7.175e-	-17				
Proportion of Variance	0.000e-	-00				
Cumulative Proportion	1.000e-	+00				

Figure S10: Heatmap (a) and PCA (b) of the gene expression of NMIT and BMT in Cucurbita pepo

(CeO₂, La₂O₃ and CuO NP/bulk results are taken from previous paper Pagano et. al, 2016)¹. Genes

up- (red) and down-regulated (green) are reported in the heatmap.

Table S8: list of genes specifically modulated by ENMs treatment. Genes are divided as always upor down-regulated in all the treatments (NMIT or NMCT) specifically for one of the nanomaterials (univocal genes, a) and for two or more nanomaterials studied (non-univocal genes, b). 152u (*ORF31*) resulted to be the only (non-univocal) gene down-regulated in all the treatments performed.

a. Univocal genes

UP-REGULATED									
CeO ₂ NP	La ₂ O ₃ NP	CuO NP	ZnO NP	CdS QD					
036d	-	005u	043d	150u					
140u			045d						
			066u						
			093u						
			099u						

DOWN-REGULATED									
CeO ₂ NP	La ₂ O ₃ NP	CuO NP	ZnO NP	CdS QD					
-	004d	-	-	124u					
	147u			155u					

b. Non-univocal genes

UP-REGULATED									
CeO ₂ NP	La ₂ O ₃ NP	CuO NP	ZnO NP	CdS QD	NMIT	NMCT	NMIT+NMCT		
008d	013u	008d	013u	071u	-	-	-		
013u	032u		018d	090u					
018d			032u	098u					
032u			071u	139u					
071u			090u						
090u			098u						
127u			127u						
139u									

			DOWN-R	EGULATED			
CeO ₂ NP	La ₂ O ₃ NP	CuO NP	ZnO NP	CdS QD	NMIT	NMCT	NMIT+NMCT
152u	152u	152u	152u	152u	152u	152u	152u

 Comp.1
 Comp.2
 Comp.3
 Comp.4
 Comp.5

 Standard deviation
 3.3747437
 2.1911772
 1.5183614
 0.97062588
 0.409660014

 Proportion of Variance
 0.5809028
 0.2448933
 0.1175905
 0.04805356
 0.008559906

 Cumulative
 Proportion
 0.5809028
 0.8257961
 0.9433865
 0.99144009
 1.000000000

Figure S11: Heatmap (a) chord diagram (b) and PCA (c) of all the CeO_2 NPs and their binary combinations with La_2O_3 NPs, CuO NPs, ZnO NPs, CdS QDs. Genes up- (red) and down-regulated (green) are reported in the heatmap. Graphic comparison between the gene expression profiles is reported in the chord diagram: ribbons show the overlap (expressed as number and percentage)

between the different sets of data, reported as up- or down-regulated CeO₂ NPs (A), La₂O₃ NPs (B), CuO NPs (C), ZnO NPs (D), CdS QDs (E).

	Comp.1	Comp.2	Comp.3	Comp.4	Comp.5
Standard deviation	2.3710180	1.1199380	0.8643563	0.45844288	0.43841614
Proportion of Variance	0.7004849	0.1562849	0.0930925	0.02618783	0.02394982
Cumulative Proportion	0.7004849	0.8567699	0.9498624	0.97605018	1.00000000

Figure S12: Heatmap (a) chord diagram (b) and PCA (c) of all the La_2O_3 NPs and their binary combinations with CeO₂ NPs, CuO NPs, ZnO NPs, CdS QDs. Genes up- (red) and down-regulated (green) are reported in the heatmap. Graphic comparison between the gene expression profiles is reported in the chord diagram: ribbons show the overlap (expressed as number and percentage)

between the different sets of data, reported as up- or down-regulated CeO₂ NPs (A), La₂O₃ NPs (B), CuO NPs (C), ZnO NPs (D), CdS QDs (E).

a

 Importance of components:
 Comp.1
 Comp.2
 Comp.3
 Comp.4
 Comp.5

 Standard deviation
 4.9398840
 2.6669927
 2.3925607
 1.05819946
 0.428368519

 Proportion of Variance
 0.6331239
 0.1845435
 0.1485187
 0.02905295
 0.004760914

 Cumulative
 Proportion
 0.6331239
 0.8176674
 0.9661861
 0.99523909
 1.000000000

Figure S13: Heatmap (a) chord diagram (b) and PCA (c) of all the CuO NPs and their binary combinations with CeO_2 NPs, La_2O_3 NPs, ZnO NPs, CdS QDs. Genes up- (red) and down-regulated (green) are reported in the heatmap. Graphic comparison between the gene expression profiles is reported in the chord diagram: ribbons show the overlap (expressed as number and

percentage) between the different sets of data, reported as up- or down-regulated CeO₂ NPs (A), La₂O₃ NPs (B), CuO NPs (C), ZnO NPs (D), CdS QDs (E).

Figure S14: Heatmap (a) chord diagram (b) and PCA (c) of all the ZnO NPs and their binary combinations with CeO_2 NPs, La_2O_3 NPs, CuO NPs, CdS QDs. Genes up- (red) and down-regulated (green) are reported in the heatmap. Graphic comparison between the gene expression profiles is reported in the chord diagram: ribbons showed the overlap (expressed as number and

percentage) between the different sets of data, reported as up- or down-regulated CeO₂ NPs (A), La₂O₃ NPs (B), CuO NPs (C), ZnO NPs (D), CdS QDs (E).

Importance of components: Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Standard deviation 3.9105024 1.8149362 1.17275905 0.78446647 0.63651324 Proportion of Variance 0.7288192 0.1569920 0.06554994 0.02932942 0.01930944 Cumulative Proportion 0.7288192 0.8858112 0.95136114 0.98069056 1.00000000

Figure S15: Heatmap (a) chord diagram (b) and PCA (c) of all the CdS QDs and their binary combinations with CeO_2 NPs, La_2O_3 NPs, CuO NPs, ZnO NPs. Genes up- (red) and down-regulated (green) are reported in the heatmap. Graphic comparison between the gene expression profiles is reported in the chord diagram: ribbons show the overlap (expressed as number and

percentage) between the different sets of data, reported as up- or down-regulated CeO₂ NPs (A), La₂O₃ NPs (B), CuO NPs (C), ZnO NPs (D), CdS QDs (E).

Figure S16: Gene network representing, in percentage, co-expression, co-localization, genetic and physical interaction (as reported in the legend) between the univocal and non-univocal genes related to ENM response studied. Query genes are indicated with stripes.

References:

- Pagano L, Servin AD, De La Torre-Roche R, Mukherjee A, Majumdar S, Hawthorne J, Marmiroli M, Maestri E, Marra RE, Isch SM, Parkash Dhankher O, White JC, Marmiroli N. 2016. Molecular response of crop plants to engineered nanomaterials. Environ. Sci. Technol., 50 (13), 7198–7207.
- Audet P, Charest C. 2007. Heavy metal phytoremediation from a meta-analytical perspective. Environmental Pollution. 147(1), 231-237.
- Marmiroli M, Pagano L, Savo Sardaro ML, Villani M, Marmiroli N. 2014. Genome-wide approach in *Arabidopsis thaliana* to assess the toxicity of cadmium sulfide quantum dots. Environ. Sci. Technol. 48, 5902-5909.

	Table S9: Add	ditional reference	es of the gene	enlisted in	the text.
--	---------------	--------------------	----------------	-------------	-----------

ref	gene name	reference
004d	CCS	Zhou GA, Chang RZ, Qiu LJ. 2010. Overexpression of soybean ubiquitin-conjugating enzyme gene GmUBC2 confers enhanced drought and salt tolerance through modulating abiotic stress-responsive gene expression in Arabidopsis. Plant Mol Biol. 72: 357. doi:10.1007/s11103-009-9575-x
005u	BIP3	Maruyama D, Endo T, Nishikawa S. 2015. BiP3 supports the early stages of female gametogenesis in the absence of BiP1 and BiP2 in Arabidopsis thaliana. Plant Signal Behav. 10 (7). doi: 10.1080/15592324.2015.1035853.
008u	BFN1	Sakamoto W and Takami T. 2014. Nucleases in higher plants and their possible involvement in DNA degradation during leaf senescence. J. Exp. Bot. 65 (14): 3835-3843. doi: 10.1093/jxb/eru091
013u	BCA3	Ferreira FJ, Guo C, Coleman, JR. 2008. Reduction of plastid-localized CA activity results in reduced Arabidopsis thaliana seedling survivorship. Plant Physiol. 147 (2): 585-594.
018d	CSD2	Thieme CJ, Rojas-Triana M, Stecyk E, Schudoma C, Zhang W, Yang L, Minambres M, Walther D, Schulze WX, Paz-Ares J, Scheible WR, Kragler F. 2015. Endogenous Arabidopsis messenger RNA transported to distant tissues. Nature Plants 1, 15025 doi:10.1038/nplants.2015.25
032u	AGL7	Leal Valentim F, Mourik, SV, Posé, D., Kim, MC, Schmid M, van Ham RC, Busscher M, Sanchez-Perez GF, Molenaar J, Angenent GC, Immink RG, van Dijk AD. 2015. A quantitative and dynamic model of the Arabidopsis flowering time gene regulatory network. PLOS ONE. doi: http://dx.doi.org/10.1371/journal.pone.0116973
036d	FER1	Hong S, Kim SA, Guerinot ML, McClung CR. 2012. Reciprocal interaction of the circadian clock with the Fe homeostasis network in Arabidopsis thaliana. Plant Physiol 161(2): 893-903.
043d	PHT1;1	Ayadi A, David P, Arrighi JF, Chiarenza S, Thibaud MC, Nussaume L, Marin E. 2015. Reducing the genetic redundancy of Arabidopsis PHT1 transporters to study phosphate uptake and signaling. Plant Physiol 167 (4): 1511-1526.
045d, 093u, 147u	ATPS4, At4g12280, PRR1	Ascencio-Ibanez JT, Sozzani R, Lee T-J, Chu T-M, Wolfinger RD, Cella R, Hanley-Bowdoin L. 2008. Global Analysis of Arabidopsis Gene Expression Uncovers a Complex Array of Changes Impacting Pathogen Response and Cell Cycle during Geminivirus Infection. Plant Physiol 148(1): 436-454
066u	AGL4	Moore RC, Grant SR, Purugganan MD. 2005. Molecular Population Genetics of Redundant Floral-Regulatory Genes in Arabidopsis thaliana. Mol Biol Evol. 22 (1): 91-103.
071u	SULTR4;2	Sottosanto JB, Gelli A, Blumwald E. 2004. DNA array analyses of Arabidopsis thaliana lacking a vacuolar Na+/H+ antiporter impact of AtNHX1 on gene expression. The Plant Journal 40 (5): 752–771
090u	PASPA3	Semane B, Dupae J, Cuypers A, Noben JP, Tuomainen M, Tervahauta A, Kärenlampi S, Van Belleghem F, Smeets K, Vangronsveld J. 2009. Leaf proteome responses of Arabidopsis thaliana exposed to mild cadmium stress. J Plant Physiol. 167(4): 247–254.
098u	OPT3	Zhai Z, Gayomba SR, Jung HI, Vimalakumari NK, Pineros M, Craft E, Rutzke MA, Danku J, Lahner B, Punshon T, Guerinot ML, Salt DE, Kochian LV, Vatamaniuk OK. 2014. OPT3 Is a Phloem-Specific Iron Transporter That Is Essential for Systemic Iron Signaling and Redistribution of Iron and Cadmium in <i>Arabidopsis</i> . The Plant Cell. 26(5): 2249-2264.
099u	NRT1.8	Gojon A, Gaymard F. 2010. Keeping nitrate in the roots: an unexpected requirement for cadmium tolerance in plants. J Mol Cell Biol 2 (6): 299-301.
124u	PRR5	Liu T, Newton L, Liu MJ, Shiu SH, Farre EM. 2015. A G-box-like motif is necessary for transcriptional regulation by circadian pseudo-response regulators in Arabidopsis. Plant Physiol. 170, 1: 528-539.
127u	GGCT2;1	Paulose B, Chhikara S, Coomey J, Jung HI, Vatamaniuk O, Parkash Dhankher O. 2013. A gamma-Glutamyl Cyclotransferase Protects Arabidopsis Plants from Heavy Metal Toxicity by Recycling Glutamate to Maintain Glutathione Homeostasis. The Plant Cell. 25, 11: 4580-4595.
139u	SD11	Aarabi F, Kusajima M, Tohge T, Konishi T, Gigolashvili T, Takamune M, Sasazaki Y, Watanabe M, Nakashita H, Fernie AR, Saito K, Takahashi H, Hubberten HM, Hoefgen R, Maruyama-Nakashita A. 2016. Sulfur deficiency–induced repressor proteins optimize glucosinolate biosynthesis in plants. Science Advances. 2, 10, e1601087. doi: 10.1126/sciadv.1601087.
140u	CEP1	Tabata R, Sumida K, Yoshii T, Ohyama K, Shinohara H, Matsubayashi Y. 2014. Perception of root- derived peptides by shoot LRR-RKs mediates systemic N-demand signalingScience. 346, 6207, 343-346. doi:10.1126/science.1257800.
150u	RPS12A	Spremulli L. 2000. Biochemistry and molecular biology of plants. Bob B. Buchanan, Wilhelm Gruissem, Russell L. Jones (Editors). Copyright © by John Wiley & Sons, Inc. ISBN: 978-0-943088-39-6.
152u	ORF31	Davletova S, Schlauch K, Coutu J, Mittler R. 2005. The zinc-finger protein zat12 plays a central role in reactive oxygen and abiotic stress signaling in Arabidopsis. Plant Physiol. 139, 2: 847-856.
155u	PSBII	Zghidi W, Merendino L, Cottet A, Mache R, Lerbs-Mache S. 2007. Nucleus-encoded plastid sigma factor SIG3 transcribes specifically the psbN gene in plastids. Nucleic Acids Research. 35, 2: 455-464.