Effects of titanium oxide nanoparticles on tetracycline accumulation and toxicity in *Oryza* sativa (L.)

Chuanxin Ma^{1, ‡, †}, Hong Liu^{§, ‡, †, *}, Guangcai Chen^Γ, Qing Zhao[¶], Brian Eitzer¹, Zonghua Wang^I, Wenjun Cai^J, Lee A. Newman^J, Jason C. White¹, Om Parkash Dhankher[‡], and Baoshan Xing^{‡, *}

[§]College of Resources and Environmental Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China

¹Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06504, United States

[‡]Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States

^rResearch Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang 311400, China

[¶]Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China

¹State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian

Agriculture and Forestry University, Fuzhou 350002, China

^JDepartment of Environmental and Forest Biology, SUNY - College of Environmental Science and Forestry, Syracuse, New York 13210, United States

Corresponding authors:

* Baoshan Xing: bx@umass.edu; Phone: 413-545-5212; Fax: 413-577-0242;

* Hong Liu: fjauliuhong@163.com; Phone: 0591-83765330; Fax: 0591-83776849

[†] These authors contributed equally to this work.

Numbers of Pages: 22

Numbers of Figures: 12

Numbers of Tables: 6

S1. Adsorption isothermal experiment

One and a half mg of TiO₂ NPs were weighed into 8 mL glass tubes containing 8 mL 1/2x Hoagland's solution (pH 5.7) amended with different concentrations of TC (0, 0.5, 1.0, 2.5, 5, 7.5, 10.0, 12.5, 15, 20 mg/L). The glass tubes were covered with aluminum-foil lined caps and shaken end-to-end in a rotator at 25 °C. The suspension was sampled at day 3 (as determined by the kinetic experiment) and filtered with 0.22 μ m filter. The TC concentrations were determined using HPLC (Waters 1525) equipped with a UV-detector (Waters 2487) at 355 nm with a C18 column. The mobile phase was a mixture of acetonitrile and oxalic acid (15/8, *v/v*). The mobile phase was adjusted to pH of 2 and flow rate was 1 mL/min. The triplicate was set in the experiment. The adsorption amount was calculated as the followed equation.

$$q = \frac{\left[(C_0 - C_t) \times V\right] - q_c}{W}$$

where q (mg/g) is the amount of TC adsorbed onto the NPs; C_0 and C_t is the initial and that at time t (mg/L) concentrations of TC, respectively (calculated based on the standard curve of TC); q_c (mg/g) is the amount of TC in control without sorbents (TiO₂ NPs); V (L) is the initial volume of the solution; W (g) is the weight of the NPs.

S2. Analysis for protein content and antioxidant enzyme activities

For protein content determination, plant fine powder was vigorously mixed with 10 mM Tris-HCl (pH 7.2) at a ratio of 1:10 (w/v). The mixture was centrifuged at 4000 rpm, 4 °C for 20 min. One hundred μ L of supernatant and 1900 μ L of Bradford reagent were reacted in a 2 mL centrifuge tube for 15 min at ambient temperature. The absorbance of each sample was measured at 595 nm. Detailed information for antioxidant enzyme extraction buffer, reaction buffer, reaction time, as well as wavelength, are shown in **Table S3**.

S4. TiO₂ NPs characterization as affected by TC

The hydrodynamic diameter and zeta potential of TiO₂ NPs in single analyte and co-exposure treatments were determined in 1/2x Hoagland's solution (**Figure S5** and **Table S2**). In TiO₂ NPs alone treatments, the hydrodynamic diameters decreased with increasing concentration of NPs in 1/2x Hoagland's solution. One of the possible explanations was that large aggregates might settle down before measurements. The surfaces of TiO₂ NPs were all negatively charged. Interestingly, the addition of different concentrations of TC notably decreased the hydrodynamic diameter of TiO₂ NPs regardless of the doses of TiO₂ NPs. The values of zeta potential also suggested that the presence of TC caused positive charges on the surface of TiO₂ NPs, which could be ascribed to that *pKa* value of TC is positive (3.3 - 9.7) at 25 °C. However, such alteration was only evident in 1000 and 2000 mg/L TiO₂ NPs amended 1/2x Hoagland's solution.

S5. The total protein contents in rice seedlings treated with $TiO_2 NPs \times TC$

As shown in **Figure S11**, the presence of TiO₂ NPs and TC significantly altered the total protein contents in rice shoots and roots. For rice shoots, 2000 mg/L TiO₂ NPs alone and 20 mg/L TC alone significantly increased the total protein content by approximately 30% relative to the control. In the co-exposure scenarios, elevation of the total protein content was evident as compared to 5 mg/L and 10 mg/L TC alone treatment. However, in the 20 mg/L TC treatment, the presence of TiO₂ NPs did not further increase the protein content, which were all decreased by 18.1% relative to its TC alone treatment; these values were still significantly higher than the control. Similar to the shoots, the protein contents in rice roots were significantly increased upon exposure to TiO₂ NPs alone or TC alone, regardless of the dose. It is worth mentioning that coexposure of TiO_2 NPs and TC resulted in decreases of the root proteins as compared to the control or the single contaminant treatment. For example, in the 10 and 20 mg/L TC treatments with 2000 mg/L TiO₂ NPs, the total protein levels were only 0.5-fold of the control, or 0.2- and 0.12-fold of the respective TC alone treatment.

Figure S1. Phenotypic images of rice seedlings treated with different concentrations of TC in 1/2x Hoagland's solution. (A) and (B) represent images of whole seedlings and rice roots, respectively, in response to different concentrations of TC.

Figure S2. Seedling length and fresh biomass of different concentrations of TC treated rice. (**A**) shows root length and shoot height; (**B**) represents fresh biomass of rice shoots and roots.

Figure S3. Phenotypic images of rice seedlings treated with different concentrations of TiO_2 NPs in 1/2x Hoagland's solution. (A) and (B) represent images of whole seedlings and rice roots, respectively, in response to different concentrations of TiO_2 NPs.

Figure S4. Seedling length and fresh biomass of different concentrations of TiO_2 NPs treated rice. (A) shows root length and shoot height; (B) represents fresh biomass of rice shoots and roots in response to TiO_2 NPs exposure.

TiO ₂ NPs TC (mg/L)	A1 (500)	A2 (1000)	A3 (2000)
B1 (5)	A1B1	A2B1	A3B1
B2 (10)	A1B2	A2B2	A3B2
B3 (20)	A1B3	A2B3	A3B3

Table S1. Interactions between TiO_2 NPs and TC in the hydroponic system

TC (mg/L)	TiO ₂ NPs (mg/L)	Hydrodynamic diameter (nm)	Zeta potential (mV)
	500	521.4 ± 22.1	-15.10 ± 0.97
0	1000	268.0 ± 10.9	-2.75 ± 9.23
	2000	64.5 ± 12.7	-16.08 ± 5.92
	500	235.0 ± 17.7	-11.41 ±2.07
5	1000	144.6 ± 11.3	1.87 ± 11.70
	2000	186.5 ± 21.4	-1.28 ± 4.59
	500	264.5 ± 13.7	-10.49 ± 3.65
10	1000	168.2 ± 25.8	8.73 ± 6.83
	2000	65.6 ± 7.2	19.45 ± 6.64
	500	325.3 ± 23.5	-12.86 ± 1.35
20	1000	174.1 ± 11.8	1.68 ± 7.67
	2000	99.3 ± 16.8	5.71 ± 7.85

Table S2. Hydrodynamic diameter and zeta potential of TiO_2 NPs as affected by TC

Figure S5. Particle distribution of TiO_2 NPs in different concentrations of TiO_2 NPs amended 1/2x Hoagland's solution as affected by TC.

Antioxidant enzyme	Extraction buffer	Reaction buffer	Reaction time (min)	Wavelength (nm)
SOD	50 mM phosphate (pH 7.8) containing 0.1% (w/v) ascorbate, 0.1 % (w/v) bovine serum albumin (BSA), and 0.05% (w/v) β - mercaptoethanol	100 μ L of enzyme extract + 1900 μ L of 50 mM phosphate buffer (pH 7.8) containing 9.9 mM L-methionine, 57 μ M NBT, 0.0044% (<i>w</i> / <i>v</i>) riboflavin and 0.025% (<i>w</i> / <i>v</i>) Triton X-100	20	560
POD	50 mM phosphate (pH 7.0) containing 1% (<i>w/v</i>) polyvinylpyrrolidone	50 µL of enzyme extract + 1.75 mL of 50 mM sodium phosphate buffer (pH 7.0) +0.1 mL of 4% guaiacol in cuvette + 0.1 mL of 1% (v/v) H ₂ O ₂ to initiate the reaction	2	470
CAT	25 mM KH ₂ PO ₄ (pH 7.4)	100 μ L of enzyme extract + 1900 μ L of 10 mM H ₂ O ₂	3	240

 Table S3. Extraction and reaction buffer of antioxidant enzymes

Method	Equation	Description	Assessment
Toxicity Unit (TU)	$TUi = Ci/IC_{50}i$ $TU = \Sigma TUi$ $TU_0 = TU/max(TUi)$	Where <i>TUi</i> is the toxicity unit of the contaminant <i>i</i> ; <i>Ci</i> represents the	TU = 1, additive; $TU > TU_0$, antagonistic; TU < 1, synergistic; $TU = TU_0$, independent; $TU_0 > TU > 1$, partially additive
Additional Index (AI)	When $TU \le 1$, AI = (1/TU)-1; When $TU \ge 1$, AI = TU(-1)+1	contaminant <i>i</i> caused 50% reduction of fresh biomass in the scenario of single exposure; IC_{50i} represents the concentration of	AI > 0, synergistic; AI = 0, additive; AI < 0, antagonistic
Mixture Toxicity Index (MTI)	$MTI = 1 - \lg TU / \lg TU_0$	contaminant <i>i</i> that caused 50% reduction of fresh biomass in the scenario of co- exposure;	MTI = 0, independent; 0 < MTI <1, partially additive; MTI = 1, additive; MTI > 1, synergistic; MTI < 0, antagonistic

Table S4. Methods for joint toxicity evaluation of TC and TiO₂ NPs to rice seedlings

TiO ₂ NPs TC (mg/L)	A1 (500)	A2 (1000)	A3 (2000)
B1 (5)	4.013	3.157	1.903
B2 (10)	8.859	7.759	5.736
B3 (20)	18.775	17.561	15.174

Table S5. Freely dissolved concentration of TC in the co-exposure treatments

Note: The freely dissolved concentration of TC was calculated based on the difference between the addition amount of TC and the portion adsorbed onto TiO_2 NPs, which was calculated by the fitting result of Langmuir model.

Treatment	BAF in shoot	BAF in root
5 mg/L TC	9.618	119.318
10 mg/L TC	10.397	214.879
20 mg/L TC	10.860	663.690
5 mg/L TC×500 mg/L TiO ₂ NPs	4.030	4.780
5 mg/L TC×1000 mg/L TiO ₂ NPs	3.266	2.570
5 mg/L TC×2000 mg/L TiO ₂ NPs	3.424	1.770
10 mg/L TC×500 mg/L TiO ₂ NPs	2.289	7.709
10 mg/L TC×1000 mg/L TiO ₂ NPs	1.485	3.042
10 mg/L TC×2000 mg/L TiO ₂ NPs	1.524	1.712
20 mg/L TC×500 mg/L TiO ₂ NPs	2.059	47.667
20 mg/L TC×1000 mg/L TiO ₂ NPs	2.007	21.302
20 mg/L TC×2000 mg/L TiO ₂ NPs	0.915	3.377

Table S6. Bioaccumulation factor of TC in rice shoots and root

Note: BAF= C_{TC} in plant tissues/ C_{TC} in Hoagland's solution

Figure S6. Interactions between TC and TiO₂ NPs in 1/2x Hoagland's solution in the absence of rice. (**A**) is TC reduction rate at ambient temperature over 5 day; (**B**) is TC adsorption amount on TiO₂ NPs.

Individual treatments

Co-exposure treatments

Figure S7. Phenotypic images of rice seedlings co-exposed to different concentrations of TC and TiO₂ NPs in 1/2x Hoagland's solution. (A) shows the images of TC alone and NPs alone treatments; (B) shows the images of co-contaminated treatments. In each image, two seedlings on the left-hand side are the control plants grown in 1/2x Hoagland's solution, and the ones on the right-hand side are the treated plants.

Figure S8. The contents of Ti in rice roots treated with different concentrations of TiO_2 NPs and TC.

Figure S9. Bioaccumulation factor of tetracycline in rice shoots (**A**) and roots (**B**) *versus* freely dissolved concentration of TC in 1/2X Hoagland's solution.

Figure S10. The contents of other nutrient elements in rice shoots co-treated with TC and TiO₂ NPs. (A) - (C) represent the contents of Ca, Mg, and Mo, respectively.

Figure S11. The total protein contents in rice shoots (**A**) and roots (**B**) upon exposure to TC and TiO₂ NPs.

Figure S12. Inhibition rate of rice biomass among all the treatments. (A) and (B) represent biomass inhibition rate in the TC alone and TiO₂ NPs alone treatment, respectively; (C) – (E) represent biomass inhibition rate in the co-treatments when the TC concentration is at 5, 10, and 20 mg/L, respectively.