Supporting Information

Understanding the pH-Dependent Adsorption of Ionizable Compounds on Graphene Oxide Using Molecular Dynamics Simulations

Huan Tang^{a,b,c}, Ying Zhao^{a,b}, Xiaonan Yang^{a,b}, Dongmei Liu^{a,b}, Sujie Shan^{a,b}, Fuyi Cui^{a,b,*}, and

Baoshan Xing ^{c,*}

^aState Key Laboratory of Urban Water Resource and Environment, Harbin 150090, China
^bSchool of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China

°Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA

SI1 XPS Characterization of Graphene Oxide

Fig. S1 XPS spectra of GO.

Table S1. XPS data and the models of GO

Sample	O:C	% C-C	% C-O	% C=O	% O-C=O
GO	1:2.083	37±2.85	34±3.62	22±2.47	7±1.36

SI2 Structure of BPA in different pH conditions

	~		~
pH	System	BPA	Structure
5.0~ 6.6	G1	$C_{15}H_{16}O_2$	
6.6~ 8.0	G2	$C_{15}H_{15}O_2$	
8.0~ 9.0	G3	C ₁₅ H ₁₄ O ₂	

 Table S2 Structure of BPA in different pH conditions

SI3 Minimization and Equilibration Results

Fig. S2. (a) Energy minimization of the simulation system. After the system is at an energy minimum, we can begin real dynamics. Energy minimization ensured that we have a reasonable starting structure, in terms of geometry and solvent orientation. (b) Temperature equilibration of the simulation system. From the plot, it is clear that the temperature of the system quickly reaches the target value (300 K), and remains stable over the remainder of the equilibration. (c) Pressure equilibration of the simulation system. The pressure value fluctuates widely over the course of the 100-ps equilibration phase, but this behavior is not unexpected. The running average of these data are plotted as the black dashed line in the plot. Over the course of the equilibration, the average value of the pressure is 1.05 bar.

SI4 Structures for π - π interaction.

Fig. S3 (a) offset face-to-face (sometimes referred to as parallel displaced). (b) T-shaped edge-to-face. (c) tilted-T structure. ¹

SI5 DFT Calculation Results of BPA and GO

Fig. S4 Surface electrostatic potentials of GO and BPA.

SI6 Mulliken electrons of BPA

System G1

The total Mulliken electrons on benzene ring R1 and R2 of neutral BPA are the same as - 0.235 e.

System G2

The total Mulliken electrons on benzene ring R1 and R2 of BPA with one ionized hydroxy are -0.233 e and -0.116 e.

System G3

The total Mulliken electrons on benzene ring I and II of neutral BPA are the same as -0.136 e.

Table S3 Mulliken electrons of common IOCs under low and high pH conditions

SI 7 Mulliken electrons of GO under low and high pH regimes

Fig S5. The model of GO and the number of carbon atoms on benzene rings

Number	1-9	10-19	20-29	30-39	40-49	50-59	60-68	
	-0.173	0.405	-0.222	-0.126	-0.063	0.382	-0.223	
	0.355	0.009	0.124	0.037	0.157	0.096	0.404	
	-0.012	0.145	0.022	0.126	0.088	0.109	0.010	
M 1111	0.326	0.030	0.210	0.074	0.138	0.127	-0.206	Total
Flastnar	0.062	0.140	0.145	0.107	0.109	0.132	0.145	Mulliken
Electron	-0.155	0.140	0.106	0.098	0.054	-0.017	-0.025	Electron
(e)	0.061	0.225	0.145	0.026	0.216	0.290	0.087	5.774e
	0.384	-0.003	0.108	0.053	-0.027	0.061	-0.260	
	-0.222	0.120	0.092	-0.029	0.094	0.076	0.387	
		0.031	-0.247	0.489	-0.151	0.376		

Table S4 Mulliken Electron Distributions of GO with All Carboxyl Groups Protonated

Table S5 Mulliken Electron Distributions of GO with One Carboxyl Groups Deprotonated

Number	1-9	10-19	20-29	30-39	40-49	50-59	60-68	
	-0.182	0.411	-0.208	-0.126	-0.064	0.383	-0.226	
	0.355	-0.010	0.111	0.032	0.160	0.097	0.404	
	-0.013	0.153	0.048	0.129	0.087	0.108	0.012	
N 11'1	0.334	0.033	0.208	0.079	0.142	0.129	-0.209	Total
Flootson	0.090	0.139	0.139	0.110	0.110	0.131	0.146	Mulliken
Electron	-0.161	0.135	0.120	0.099	0.050	-0.019	-0.024	Electron
(e)	0.082	0.227	0.141	0.014	0.226	0.298	0.086	5.825e
	0.387	-0.003	0.110	0.059	-0.022	0.052	-0.258	
	-0.229	0.132	0.092	-0.022	0.099	0.098	0.388	
		0.013	-0.241	0.489	-0.205	0.372		

Number	1-9	10-19	20-29	30-39	40-49	50-59	60-68	
	-0.170	0.410	-0.180	-0.141	-0.051	0.384	-0.218	
	0.355	0.010	0.116	0.054	0.154	0.093	0.406	
	-0.010	0.144	0.026	0.119	0.089	0.107	0.009	
N 6 11'1	0.331	0.038	0.210	0.074	0.140	0.128	-0.196	Total
Mulliken	0.068	0.141	0.145	0.109	0.106	0.137	0.139	Mulliken
Electron	-0.153	0.140	0.106	0.101	0.056	-0.015	-0.021	Electron
(e)	0.068	0.223	0.144	0.024	0.217	0.288	0.078	5.955e
	0.386	-0.001	0.109	0.057	-0.022	0.056	-0.221	
	-0.218	0.120	0.095	-0.026	0.097	0.092	0.388	
		0.032	-0.245	0.492	-0.149	0.383		

Table S6 Mulliken Electron Distributions of GO with Two Carboxyl Groups Deprotonated

Table S7 Mulliken Electron Distributions of GO with All Carboxyl Groups Protonated

	Mulliken Electron Distributions of GO with All Carboxyl Groups Protonated												
Number	1-9	10-19	20-29	30-39	40-49	50-59	60-68						
	-0.179	0.413	-0.205	-0.150	-0.037	0.384	-0.222						
	0.355	-0.011	0.113	0.069	0.142	0.096	0.406						
	-0.012	0.153	0.050	0.123	0.091	0.107	0.015						
M 1111	0.335	0.033	0.208	0.077	0.142	0.127	-0.207	Total					
Flootsen	0.093	0.138	0.140	0.111	0.110	0.132	0.153	Mulliken					
Electron	-0.160	0.135	0.121	0.098	0.050	-0.019	-0.045	Electron					
(e)	0.084	0.226	0.141	0.013	0.226	0.297	0.108	5.898e					
	0.388	-0.002	0.111	0.059	-0.019	0.050	-0.269						
	-0.227	0.132	0.092	-0.020	0.099	0.101	0.397						
		0.014	-0.241	0.491	-0.204	0.378							

SI8 Adsorption of 4'-Methylbiphenyl-2-Carboxylic Acid (MCA) on GO

Fig. S5 Setup of the simulation system. (a) The sideview of one example system (H in white, O in red, and C in black). The smaller molecule represents MCA, the larger molecule represents GO, and the tiny redlines represent water molecules. The initial distance between GO and BPA was 2 nm. (b) The dimension of GO. (c) The model of MCA.

Fig. S6 Molecular dynamics simulation results. (a) Distance between GO and BPA. The initial distance was 2.0 nm. (b) L-J potential energy between GO and MCA. (c) Electrostatic potential energy between GO and MCA. The positive values imply electrostatic repulsions.

The above figures indicated that at high pH, longer time was needed for MCA to adsorbed on GO.

Fig. S7 Amount of different kinds of H-bonds formed under low and high pH conditions. (a) Amount GO...water, MCA...water and MCA...GO H-bond formed under low pH condition. (a) Amount GO...water, MCA...water and MCA...GO H-bond formed under high pH condition.

At high pH, more H-bonds formed between MCA and GO, which decreased the adsorption efficiency. More GO...water and MCA-water H-bonds appeared than that of MCA...GO H-bond, indicating the water mediated H-bond acted as a steering force in the adsorption process.

Fig. S8 Amount of MCA adsorbed onto

GO after 20ns. (a) The initial distribution of 10 MCAs around GO. (b) After 20 ns of simulation, 10 MCAs adsorbed on GO at under low pH conditions. (c) After 20 ns of simulation, 8 MCAs adsorbed on GO at under high pH conditions.

The results indicated under high pH, the adsorption capacity of MCA on GO decreased.

SI9 Force Field Parameters

ſ	defaults]

1			3		yes	0.5	0.5
[aton	ntyp	bes]					
CB	6	12.0	1100	0.000	А	3.55000e-01	2.92880e-01
HA	1	1.0	00800	0.06	А	2.42000e-01	1.25520e-01
СН	6	12.0	1100	-0.12	А	3.55000e-01	2.92880e-01
HW	1	1.	00800	0.41	А	0.00000e+00	0.00000e+00
OW	8	15.	99940	-0.82	А	3.16557e-01	6.50194e-01
СТ	6	12.0	1100	0.140	А	3.50000e-01	2.76144e-01
OS	8	15.9	9940	-0.280	А	2.90000e-01	5.85760e-01
CF	6	12.0	1100	0.150	А	3.55000e-01	2.92880e-01
OH	8	15.9	99940	-0.585	А	3.07000e-01	7.11280e-01
НО	1	1.0	00800	0.435	А	0.00000e+00	0.00000e+00
С	6	12.0	1100	0.520	А	3.75000e-01	4.39320e-01
OH2	8	15.9	99940	-0.530	А	3.00000e-01	7.11280e-01
O_3	8	15.9	9940	-0.440	А	2.96000e-01	8.78640e-01
HO2	1	1.0	00800	0.450	А	0.00000e+00	0.00000e+00
[bo	ndty	pes]					
CB	3	CB	1	0.14000	392459.2		
CB	3	СН	1	0.14000	392459.2		
CH	ł	СН	1	0.14000	392459.2		
CH	ł	HA	1	0.10800	307105.6		
HV	V	OW	1	0.09572	502080.0		
CB	3	СТ	1	0.15100	265265.6	5	
CB	3	С	1	0.14000	392459.2		
СТ		OS	1	0.14100	267776.0	1	
С		O_3	1	0.12290	476976.0		
С		OH2	1	0.13640	376560.0)	
НС)	OH	1	0.09450	462750.4		
CF		OH	1	0.13640	376560.0)	
CF		CB	1	0.14000	392459.2		
СТ		СТ	1	0.15290	224262.4		
CB	3	OH	1	0.13640	376560.0)	
СТ		CF	1	0.15100	265265.6		
CF		CF	1	0.14000	392459.2		
HC)2	OH2	1	0.09450	462750.4	4	
[angl	letyp	pes]					
CB	3	CB	CB	1	120.000	527.184	
CB	3	CB	СН	1	120.000	527.184	
CH	ł	СН	CB	1	120.000	527.184	
CB	3	СН	HA	1	120.000	292.880	
CH	ł	СН	HA	1	120.000	292.880	

HW	OW	HW	7	1	109.500) 627.	.600				
СТ	OS	СТ	· 1		109.500	502.	080				
CB	CB	СТ	-	l	120.000) 585.	760				
CB	СТ	СТ			114.000	527.	184				
CB	СТ	OS	5		109.500	418.	400				
CB	С	0_	3 1	1	20.400	669.4	440				
CB	CB	С	1		120.000	711.	280				
CB	С	OH	12	l	120.000	585.	760				
O_3	С	OH	2 1		121.000	669.	440				
CF	OH	HO)	1	113.00	0 292	.880				
CB	CF	OF	I	1	120.000) 585.	.760				
CB	CF	CE	3		120.000	527.	184				
CB	CB	CF			120.000	527.	184				
CB	С	OH	I	l	120.000) 585.	760				
СТ	OH	HO	С	1	113.00	0 292	.880				
CF	CB	СТ	· 1		119.700	585.	760				
CB	СТ	CE	3	l	109.500) 334.	720				
СТ	СТ	OS	1		109.500	418.	400				
CB	OH	H	С	1	113.00	0 292	.880				
CB	CB	Oł	ł	1	120.00	0 585	.760				
CF	CB	CF	' 1		120.000	527.	184				
СТ	CF	OH	I	l	120.000) 585.	760				
CB	CF	СТ	. 1		120.000	585.	760				
CF	СТ	OS	1		109.500	418.4	400				
CF	СТ	СТ	' 1		114.000	527.	184				
CB	СТ	CF	r 1		109.500	334.	720				
CF	CF	OH	[]		120.000	585.	760				
CF	CF	CB	1		120.000	527.	184				
СТ	CF	CF	1		20.000	585.2	760				
CF	CB	С	1		20.000	711.2	280				
СТ	CB	С	1		119.700	585.	760				
СТ	CB	СТ			116.000	585.	760				
СТ	CB	CE	3	l	120.000) 585.	760				
СТ	CF	СТ	' 1		120.000	585.	760				
С	OH2	HC)2	1	113.000) 292	.880				
[dihed	Iraltypes]									
С	CB	CB	CB	3	30	0.33400	0.00000	-30.33400	0.00000	0.00000	0.00000
СН	CB	CB	СН	3	3	0.33400	0.00000	-30.33400	0.00000	0.00000	0.00000
CB	CB	CB	СН	3	3	0.33400	0.00000	-30.33400	0.00000	0.00000	0.00000
CB	СН	СН	CB	3	3	0.33400	0.00000	-30.33400	0.00000	0.00000	0.00000
CB	CB	СН	СН	3	3	0.33400	0.00000	0-30.33400	0.00000	0.00000	0.00000
HA	СН	СН	HA		3	30.3340	0 0.00	000 -30.3340	0 0.00000	0.0000	0.00000 0
HA	СН	CB	CB		3	30.334	0.00	0000 -30.3340	0.0000	0.0000	0.00000
HA	СН	СН	CB		3	30.334	0.0	0000 -30.334	0.0000	0.0000	0.00000 0.00000

CB	CB	CB	CB	3	30.33400	0.00000 -30.33400	0.00000	0.00000	0.00000
СН	CB	CB	СН	3	30.33400	0.00000 -30.33400	0.00000	0.00000	0.00000
CB	CB	CB	СН	3	30.33400	0.00000 -30.33400	0.00000	0.00000	0.00000
CB	СН	СН	CB	3	30.33400	0.00000 -30.33400	0.00000	0.00000	0.00000
CB	CB	СН	СН	3	30.33400	0.00000 -30.33400	0.00000	0.00000	0.00000
HA	СН	СН	HA	3	30.33400	0.00000 -30.33400	0.00000	0.00000	0.00000
HA	СН	CB	CB	3	30.33400	0.00000 -30.33400	0.00000	0.00000	0.00000
HA	СН	СН	CB	3	30.33400	0.00000 -30.33400	0.00000	0.00000	0.00000
CB	СТ	OS	СТ	3	1.71544	2.84512 1.04600	-5.60656	0.00000	0.00000
CB	CB	СТ	OS	3	0.00000	0.00000 0.00000	0.00000	0.00000	0.00000
CB	СТ	СТ	OS	3	2.87441	0.58158 2.09200	-5.54799	0.00000	0.00000
CB	OS	СТ	СТ	3	1.71544	2.84512 1.04600	-5.60656	0.00000	0.00000
CB	OS	СТ	CB	3	1.71544	2.84512 1.04600	-5.60656	0.00000	0.00000
CB	CB	CB	СТ	3	44.97800	0.00000 -44.97800	0.00000	0.00000	0.00000
СТ	CB	СТ	СТ	3	44.97800	0.00000 -44.97800	0.00000	0.00000	0.00000
CB	CB	СТ	СТ	3	44.97800	0.00000 -44.97800	0.00000	0.00000	0.00000
CB	СТ	СТ	CB	3	44.97800	0.00000 -44.97800	0.00000	0.00000	0.00000
CB	С	OH	НО	3	29.28800	-8.36800 -20.92000	0.00000	0.00000	0.00000
НО	OH	С	O_3	3	23.01200	0.00000 -23.01200	0.00000	0.00000	0.00000
CB	CB	С	O_3	3	8.78640	0.00000 -8.78640	0.00000	0.00000	0.00000
CB	CB	С	OH	3	8.78640	0.00000 -8.78640	0.00000	0.00000	0.00000
CB	CB	CB	С	3	30.33400	0.00000 -30.33400	0.00000	0.00000	0.00000
CB	CF	OH	НО	3	7.03749	0.00000 -7.03749	0.00000	0.00000	0.00000
CB	CB	CB	OH	3	30.33400	0.00000 -30.33400	0.00000	0.00000	0.00000
CB	CB	CB	CF	3	30.33400	0.00000 -30.33400	0.00000	0.00000	0.00000
CB	CB	CF	CB	3	30.33400	0.00000 -30.33400	0.00000	0.00000	0.00000
CB	CB	СТ	CB	3	0.00000	0.00000 0.00000	0.00000	0.00000	0.00000
CF	CB	СТ	СТ	3	0.00000	0.00000 0.00000	0.00000	0.00000	0.00000
СТ	CB	CB	СТ	3	30.33400	0.00000 -30.33400	0.00000	0.00000	0.00000
СВ	CF	CB	СТ	3	30.33400	0.00000 -30.33400	0.00000	0.00000	0.00000
СВ	СТ	CB	CF	3	0.00000	0.00000 0.00000	0.00000	0.00000	0.00000
СТ	CB	CB	CF	3	30.33400	0.00000 -30.33400	0.00000	0.00000	0.00000
CF	CB	CB	CF	3	30.33400	0.00000 -30.33400	0.00000	0.00000	0.00000
CB	CB	С	OH2	3	8.78640	0.00000 -8.78640	0.00000	0.00000	0.00000
CB	CB	OH	НО	3	7.03749	0.00000 -7.03749	0.00000	0.00000	0.00000
СТ	CF	OH	НО	3	0.00000	0.00000 0.00000	0.00000	0.00000	0.00000
СТ	CF	CB	CB	3	30.33400	0.00000 -30.33400	0.00000	0.00000	0.00000;
СТ	CF	CB	CF	3	30.33400	0.00000 -30.33400	0.00000	0.00000	0.00000;
CB	СТ	CF	CB	3	44.97800	0.00000 -44.97800	0.00000	0.00000	0.00000
СВ	CF	CB	CF	3	30.33400	0.00000 -30.33400	0.00000	0.00000	0.00000
CF	СТ	OS	СТ	3	1.71544	2.84512 1.04600	-5.60656	0.00000	0.00000
СВ	CB	СТ	CF	3	0.00000	0.00000 0.00000	0.00000	0.00000	0.00000
CF	СТ	СТ	CB	3	30.33400	0.00000 -30.33400	0.00000	0.00000	0.00000
CB	CF	СТ	СТ	3	0.00000	0.00000 0.00000	0.00000	0.00000	0.00000

СТ	CF	CF	CB	3	30.33400	0.00000 -30.33400	0.00000	0.00000	0.00000
СВ	CT	CF	CF	3	30.33400	0.00000 -30.33400	0.00000	0.00000	0.00000
СВ	CB	CF	CF	3	30.33400	0.00000 -30.33400	0.00000	0.00000	0.00000
С	CB	CF	CB	3	44.97800	0.00000 -44.97800	0.00000	0.00000	0.00000
CF	CB	С	O_3	3	8.78640	0.00000 -8.78640	0.00000	0.00000	0.00000
CB	СТ	CB	СТ	3	44.97800	0.00000 -44.97800	0.00000	0.00000	0.00000
СТ	СТ	СТ	СТ	3	44.97800	0.00000 -44.97800	0.00000	0.00000	0.00000
СТ	СТ	CB	СТ	3	44.97800	0.00000 -44.97800	0.00000	0.00000	0.00000
CB	СТ	СТ	СТ	3	44.97800	0.00000 -44.97800	0.00000	0.00000	0.00000
СТ	СТ	OS	СТ	3	1.71544	2.84512 1.04600	-5.60656	0.00000	0.00000
CB	С	OH2	HO2	3	29.28800	-8.36800 -20.92000	0.00000	0.00000	0.00000
CB	СТ	CF	СТ	3	44.97800	0.00000 -44.97800	0.00000	0.00000	0.00000

References

1. Jennings, W. B.; Farrell, B. M.; Malone, J. F., Attractive intramolecular edge-to-face aromatic interactions in flexible organic molecules. *Accounts. Chem. Res.* **2001**,*34*, (11), 885-894.