Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2017

Mussel-inspired hybrid copolymer adhered to chitosan-coated micro-sized carbon fiber

aerogels for high-efficient nanoparticles scavenger

Rui-Lin Liu ^{a,b,c*}, Shuai Mao ^{a,d}, Yan Wang ^a, Lu Wang ^{a,d}, Yan-Hui Ge ^a, Xin-Ya Xu ^a and Qiang Fu ^{a*}

^a School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China.

^b Key Laboratory of Shaanxi Province Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, PR China.

^c Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, USA.

^d School of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA.

^{*}Corresponding author

E-mail: lrlxjtu1987@xjtu.edu.cn (R.-L. Liu) & fuqiang@mail.xjtu.edu.cn (Q. Fu).

 Table S1. Isotherm parameters obtained by linear isotherm model for the adsorption of Au and Ag NPs
 onto MCFAs@CS@PDA/PEI

Isotherm	Langmuir			_	Freundlich		
	Q_{0}	$K_{ m L}$	R^2		$K_{ m F}$	n	R^2
	(mg g ⁻¹)	(L mg ⁻¹)			$(mg \cdot g^{-1})$		
					$(L \cdot mg^{-1})^{1/n}$		
Langmuir (Ag NPs)	41.84	0.95	0.9991	Ag NPs	987.6	2.137	0.8758
Langmuir (Au NPs)	31.23	1.77	0.9994	Au NPs	890.9	2.833	0.9581

Table S2. Kinetic models parameters for the adsorption of Au and Ag NPs onto MCFAs@CS@PDA/PEI

	C_0 (mol·L ⁻¹)	$q_{\rm e, exp}$ (mg g ⁻¹)	Pseudo-first-order		Pseudo-second-order			
			k_1 (min ⁻¹)	$q_{ m e, \ calc} \ (m mg \ m g^{-1})$	<i>R</i> ²	k_2 (g mg ⁻¹ min ⁻¹)	$q_{ m e, calc}$ (mg g ⁻¹)	<i>R</i> ²
	$1.0 \times 10^{-4} \text{ M}$	6.66	0.114	5.61	0.9991	0.024	7.40	0.9999
Ag	$2.5 imes 10^{-4} \ M$	13.88	0.068	15.3	0.9989	0.0066	15.47	0.9999
NPs	$5.0 imes 10^{-4} \ M$	30.3	0.044	12.81	0.9991	0.0063	31.74	1.0000
	6.5 × 10 ⁻⁴ M	33.2	0.039	21.54	0.9993	0.0030	37.31	1.0000
	$0.67 \times 10^{-4} \text{ M}$	7.14	0.044	5.81	0.9990	0.0083	8.26	1.0000
Au	$1.36 \times 10^{-4} \text{ M}$	19.6	0.032	15.95	0.9991	0.0051	21.00	0.9999
NPs	$2.72 \times 10^{-4} \text{ M}$	27.02	0.032	9.67	0.9992	0.0045	29.41	1.0000
	$4.08\times10^{4}\ M$	31.25	0.037	10.80	0.9990	0.0058	33.33	0.9999

at different initial Au/Ag NPs concentrations

Adsorbents	Reproducibility	Absorptive Capacities	Material Cost for 1.0 Kg	
		for Au NPs and Ag NPs	(\$)	
		$(mg g^{-1})$		
Chitosan-coated	2	17.9 and 13.1	$\sim \! 150$	
cellulose nanofibers [1]				
Polyethylenimine-coated	1	102 and 125	- 420	
carbon spheres [2]	1	102 and 135	\sim 420	
PVA/gluten hybrid nanofibers [3]	1	36.5 and 31.8	${\sim}630$	
Polyginyl alashol papofibors [4]	1	70 and 56	~ 570	
Polyvinyi alconor hanomers [4]	1	79 and 30	/~3/0	
Carbonaceous nanofiber	No study	Removal rate $>90\%$	\sim 700	
membranes [5]				
Hybrid DDA/DEL conclumer	2	20.2 and 24.0	\sim 270	
grafted onto CS-coated	2	50.2 and 54.9	270	
misromator sized earbon fiber				
aerogola				
aerogers				

 Table S3. The cost evaluation among different adsorbents.

[1] N. Mahanta, W.Y. Leong and S. Valiyaveettil, J. Mater. Chem., 2012, 22, 1985-1993.

[2] J. Kumar, R. Mallampati, A. Adin and S. Valiyaveettil, ACS Sustainable Chem. Eng., 2014, 2, 2675-2682.

[3] B. Dhandayuthapani, R. Mallampati, D. Sriramulu, R.F. Dsouza and S. Valiyaveettil, *ACS Sustainable Chem. Eng.*, 2014, 2 (4), 1014-1021.

[4] N. Mahanta and S. Valiyaveettil, Nanoscale, 2011, 3, 4625-4631.

[5] H.-W. Liang, L. Wang, P.-Y. Chen, H.-T. Lin, L.-F. Chen, D. He and S.-H. Yu, *Adv. Mater.*, 2010, 22, 4691-4695.

 Table S4. Summary of filtration of different nanoparticles solution after passing through a column filled

 with MCFAs@CS@PDA/PEI

	Citrate capped Au nanoparticles	Citrate capped Ag nanoparticles
Time/min	Efficiency/%	Efficiency/%
15 (first 20 mL)	96.21	98.15
Next 20 mL	74.33	77.96

Table S5. The area ratio of each fitting peaks for N1s in the MCFAs@CS@PDA/PEI sample.

	N-(C) ₃) (%)	C=N (%)	N-H (%)
N1s	400.8 eV	401.6 eV	402.4 eV
	19.20	49.50	31.30

Figure S1. Particle size distribution of Ag NPs (A) and Au NPs (B). Particle size distribution of Ag NPs is $26 \text{ nm} \pm 2 \text{ nm}$ and of Au NPs is $35 \text{ nm} \pm 3 \text{ nm}$.

Figure S2. UV-Vis spectra of citrate capped Au and Ag nanoparticles.

Figure S3. Plots of linear Langmuir (a) and Freundlich isotherm (b) models for the adsorption of Au and Ag nanoparticles onto MCFAs@CS@PDA/PEI at 303 K.

Figure S4. EDS data of MCFAs@CS@PDA/PEI after adsorption of (a) Au NPs and (b) Ag NPs.

Figure S5. Plot of isothermal adsorption for the adsorption of Au and Ag nanoparticles onto MCFAs@CS@PDA/PEI at 303 K.

Figure S6. UV-Vis spectra of the Ag NPs (0.8×10^{-4} M) and Au NPs (1.0×10^{-4} M) solutions and purified solutions by using 30 mg MCFAs@CS@PDA/PEI as adsorbent. The photos are corresponding to the initial Ag NPs and Au NPs solutions after ten minutes static adsorption treatment under identical conditions.

Figure S7. The adsorption efficiencies of MCFAs@CS@PDA/PEI for first time adsorption, second time without and with acid treated fibers using citrate capped Au-nanoparticles (a, 2.72×10^{-4} M) and citrate capped Ag-nanoparticles (b, 6.5×10^{-4} M).

Figure S8. FTIR/ATR spectra of the chitosan (CS), MCFAs-CS, MCFAs-COOH and MCFAs (a); MCFAs-CS-PDA-PEI, MCFAs-PDA, dopamine and polyethyleneimine (b).

Figure S9. XRD patterns of MCFAs, MCFAs@CS, MCFAs@CS@PDA and MCFAs@CS@PDA/PEI

composites ($\lambda = 1.54$ Å)