Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2018

- **Supporting information:**

Figure S.1 STEM image of uncapped cerium dioxide NMs indicating size of 4.7 ± 1.4 nm.

9 Table S.1. DLS and TEM results for the 45 and 65 °C temperature exposed PVP reference

10 and NMs samples.

Sample	Temp	DLS Histogram	TEM image
	(°C)		
10 K PVP reference	25	Listen 16 14 12 14 12 10 10 10 10 10 10 10 10 10 12 hours 12 hours 12 hours 12 hours 12 hours 12 hours 12 days 14 days 28 days 14 days 28 days 14 days 28 days 10 10 10 10 10 10 10 10 10 10	
10 K PVP reference	45		

Figure S.2 Average Zeta potential (mV) as a function of time for PVP reference sample at 25, 45, 65 and 80 °C.

Figure S.3 Average Zeta potential (mV) as a function of time for 10 K PVP capped cerium dioxide NMs at 25, 45, 65 and 80 $^{\circ}$ C.

Time (hours) Figure S.4 Average Zeta potential (mV) as a function of time for 40 K PVP capped cerium dioxide NMs at 25, 45, 65 and 80 °C.

Figure S.5 Average Zeta potential (mV) as a function of time for 360 K PVP capped cerium dioxide NMs at 25, 45, 65 and 80 °C.

Figure S.6 Average Zeta potential (mV) as a function of time for uncapped cerium dioxide NMs at 25, 45, 65 and 80 $^{\circ}$ C.

T=25

Figure S.7 Average Zeta potential (mV) as a function of time for 10 K PVP capped zinc oxide NMs at 25, 45, 65 and 80 $^{\circ}$ C.

Figure S.8 Average Zeta potential (mV) as a function of time for 10 K PVP capped copper oxide NMs at 25, 45, 65 and 80 $^{\circ}$ C.

Figure S.9 Change in average zeta potential (mV) as a function of time for 10 K PVP capped cerium dioxide NMs at 25, 45, 65 and 80 $^{\circ}$ C.

Figure S.10 Change in average zeta potential (mV) as a function of time for 40 K PVP capped cerium dioxide NMs at 25, 45, 65 and 80 $^{\circ}$ C.

Figure S.11 Change in average zeta potential (mV) as a function of time for 360 K PVP capped cerium dioxide NMs at 25, 45, 65 and 80 $^{\circ}$ C.

Figure S.12 Change in average zeta potential (mV) as a function of time for 10 K PVP capped copper oxide NMs at 25, 45, 65 and 80 $^{\circ}$ C.

Figure S.13. XPS Spectra for 10 K PVP capped ceria NMs as prepared and after 28 days at T=25, 45, 65 and 80 °C indicating Ce^{3+} (violet) and Ce^{4+} (green) components.

Figure S.14. XPS Spectra for 40 K PVP capped ceria NMs as prepared and after 28 days at T=25, 45, 65 and 80 °C indicating Ce^{3+} (violet) and Ce^{4+} (green) components.

Figure S.15. XPS Spectra for 360 K PVP capped ceria NMs as prepared and after 28 days at T=25, 45, 65 and 80 $^{\circ}$ C indicating Ce³⁺ (violet) and Ce⁴⁺ (green) components.

Figure S.16 XPS Spectra for uncapped cerium dioxide NMs as prepared and after 28 days at T=25, 45, 65 and 80 °C indicating Ce^{3+} (violet) and Ce^{4+} (green) components.

Figure S.17 XPS Spectra for 10 K PVP capped zinc oxide NMs as prepared and after 28 days at T=25, 45, 65 and 80 $^{\circ}$ C.

Figure S.18. XPS Spectra for 10 K PVP capped copper oxide NMs as prepared and after 28 days at T=25, 45, 65 and 80 °C indicating Cu^+ (violet) and $Cu2^+$ (green) components.

- 1.

Figure S. 20. UV-VIS spectra for 10 K PVP capped cerium dioxide NMs exposed to a) 25, b) 45, c) 65 and d) 80 °C as a function of time.

Figure S.21 UV-VIS spectra for 40 K PVP capped cerium dioxide NMs exposed to a) 25, b) 45, c) 65 and d) 80 °C as a function of time.

Figure S.22 UV-VIS spectra for 360 K PVP capped cerium dioxide NMs exposed to a) 25, b) 45, c) 65 and d) 80 °C as a function of time.

Figure S.23 UV-VIS spectra for uncapped ceria NMs exposed to a) 25, b) 45, c) 65 and d) 80 °C as a function of time.

Figure S.24 UV-VIS spectra for 10 K PVP capped zinc oxide NMs exposed to a) 25, b) 45 c) 65 and d) 80 °C as a function of time.

Figure S. 26 UV-VIS spectra showing increasing volumes of 4 µg/mL of a PVP dispersion added to uncapped
ceria NPs as an indication that an increase in PVP concentration results in shielding of the metal oxide peak.