## How to judge whether QSAR/read-across predictions can be

## trusted? Novel approach for establishing model's applicability

domain

Agnieszka Gajewicz

Laboratory of Environmental Chemometrics, Faculty of Chemistry, University of Gdansk, Gdansk,

Poland

## **Supplementary materials**

**Corresponding author**: A. Gajewicz, Laboratory of Environmental Chemometrics, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland Phone: (+48 58) 523 52 46; fax: (+48 58) 523 50 12; e-mail: <u>a.gajewicz@qsar.eu.org</u>

#### Case Study 1

<u>**Table S1.**</u> Descriptors used for Nano-QSAR model development along with experimentally observed and predicted values of nanotoxicity to *E. coli* bacteria for training and validation compounds (MeOx NPs) reported by Pathakoti *et al.*<sup>[1]</sup>

|                                |         |          |                       |                        |      |                                         |                                      |           | Standardized                     | 1         |
|--------------------------------|---------|----------|-----------------------|------------------------|------|-----------------------------------------|--------------------------------------|-----------|----------------------------------|-----------|
| MeOx                           | QMELECT | LZELEHHO | Autoscaled<br>QMELECT | Autoscaled<br>LZELEHHO | Set* | Experimental<br>-log(LC <sub>50</sub> ) | Predicted<br>-log(LC <sub>50</sub> ) | Residuals | cross-<br>validated<br>residuals | Leverages |
| Al <sub>2</sub> O <sub>3</sub> | 0.10    | 0.21     | -0.36                 | 0.95                   | Т    | 2.42                                    | 1.78                                 | 0.64      | 1.26                             | 0.22      |
| CoO                            | 0.10    | 0.17     | -0.49                 | -0.25                  | Т    | 3.13                                    | 3.41                                 | -0.28     | -0.72                            | 0.10      |
| Cr <sub>2</sub> O <sub>3</sub> | 0.10    | 0.20     | -0.55                 | 0.61                   | Т    | 2.06                                    | 2.15                                 | -0.09     | -0.36                            | 0.18      |
| CuO                            | 0.13    | 0.18     | 1.05                  | 0.02                   | Т    | 4.24                                    | 4.06                                 | 0.18      | 0.22                             | 0.19      |
| In <sub>2</sub> O <sub>3</sub> | 0.10    | 0.20     | -0.65                 | 0.53                   | Т    | 2.83                                    | 2.18                                 | 0.65      | 1.22                             | 0.19      |
| TiO <sub>2</sub>               | 0.11    | 0.19     | -0.10                 | 0.50                   | Т    | 2.14                                    | 2.6                                  | -0.46     | -1.07                            | 0.11      |
| Y <sub>2</sub> O <sub>3</sub>  | 0.10    | 0.13     | -0.60                 | -1.40                  | Т    | 5.79                                    | 4.98                                 | 0.81      | 1.67                             | 0.24      |
| ZnO                            | 0.12    | 0.13     | 0.97                  | -1.30                  | Т    | 5.8                                     | 5.9                                  | -0.1      | -0.50                            | 0.49      |
| ZrO <sub>2</sub>               | 0.11    | 0.18     | 0.02                  | 0.20                   | Т    | 2.58                                    | 3.12                                 | -0.54     | -1.18                            | 0.08      |
| Fe <sub>2</sub> O <sub>3</sub> | 0.10    | 0.17     | -0.45                 | -0.08                  | Т    | 2.4                                     | 3.19                                 | -0.79     | -1.68                            | 0.10      |
| La <sub>2</sub> O <sub>3</sub> | 0.09    | 0.12     | -1.17                 | -1.63                  | Т    | 4.96                                    | 4.93                                 | 0.03      | -0.09                            | 0.31      |
| Sb <sub>2</sub> O <sub>3</sub> | 0.10    | 0.17     | -0.29                 | -0.10                  | Т    | 3.12                                    | 3.33                                 | -0.21     | -0.56                            | 0.08      |
| SiO <sub>2</sub>               | 0.15    | 0.24     | 2.61                  | 1.94                   | Т    | 2.54                                    | 2.37                                 | 0.17      | 0.80                             | 0.70      |
| NiO                            | 0.10    | 0.18     | -0.37                 | 0.09                   | V    | 3.79                                    | 3.01                                 | 0.78      | 1.19                             | 0.10      |
| SnO <sub>2</sub>               | 0.14    | 0.22     | 1.94                  | 1.34                   | V    | 2.53                                    | 2.77                                 | -0.24     | -0.58                            | 0.41      |
| $V_2O_3$                       | 0.11    | 0.17     | 0.23                  | -0.10                  | V    | 3.48                                    | 3.68                                 | -0.2      | -0.52                            | 0.09      |
| Bi <sub>2</sub> O <sub>3</sub> | 0.10    | 0.18     | -0.26                 | 0.20                   | V    | 3.55                                    | 2.92                                 | 0.63      | 0.92                             | 0.09      |

\* T – training set; V – validation set; QMELECT – the absolute electronegativity of the metal atom; LZELEHHO – the absolute electronegativity of the metal oxide





| MeOx                           | Average<br>Euclidean<br>distance | Standardized<br>cross-validated<br>residuals | Set |
|--------------------------------|----------------------------------|----------------------------------------------|-----|
| Al <sub>2</sub> O <sub>3</sub> | 1.50                             | 1.26                                         | 1   |
| CoO                            | 1.22                             | -0.72                                        | 1   |
| Cr <sub>2</sub> O <sub>3</sub> | 1.33                             | -0.36                                        | 1   |
| CuO                            | 1.72                             | 0.22                                         | 1   |
| In <sub>2</sub> O <sub>3</sub> | 1.34                             | 1.22                                         | 1   |
| TiO <sub>2</sub>               | 1.23                             | -1.07                                        | 1   |
| Y <sub>2</sub> O <sub>3</sub>  | 1.90                             | 1.67                                         | 1   |
| ZnO                            | 2.12                             | -0.50                                        | 1   |
| ZrO <sub>2</sub>               | 1.18                             | -1.18                                        | 1   |
| Fe <sub>2</sub> O <sub>3</sub> | 1.17                             | -1.68                                        | 1   |
| $La_2O_3$                      | 2.30                             | -0.09                                        | 1   |
| $Sb_2O_3$                      | 1.14                             | -0.56                                        | 1   |
| SiO <sub>2</sub>               | 3.60                             | 0.80                                         | 1   |
| NiO                            | 1.07                             | 1.19                                         | 2   |
| SnO <sub>2</sub>               | 2.60                             | -0.58                                        | 2   |
| $V_2O_3$                       | 1.18                             | -0.52                                        | 2   |
| Bi <sub>2</sub> O <sub>3</sub> | 1.06                             | 0.92                                         | 2   |

<u>**Table S2.**</u> Input matrix data for 95% and 99% confidence interval boundaries estimation using the Student's *t*-distribution and developed in-house *R*-code

<u>**Table S3.**</u> Results on the applicability domain determination using: range-based method, geometrical-based method, distance-based method and standardization approach





## Case Study 2

Table S4. Descriptors used for Nano-QSAR model development along with experimentally observed and predicted values of nanotoxicity to *E. coli* bacteria for training and validation compounds (MeOx NPs) reported by Mu *et al.*<sup>[2]</sup>

| MeOx                           | $\Delta H_{me^+}$ | Z/r  | Autoscaled<br>ΔH <sub>me+</sub> | Autoscaled<br>Z/r | Set* | Experimental<br>log(1/EC <sub>50</sub> ) | Predicted<br>log(1/EC <sub>50</sub> ) | Residuals | Standardized<br>residuals | Leverages |
|--------------------------------|-------------------|------|---------------------------------|-------------------|------|------------------------------------------|---------------------------------------|-----------|---------------------------|-----------|
| ZnO                            | 662.4             | 2.70 | -1.29                           | -1.12             | Т    | 3.45                                     | 3.39                                  | 0.06      | 0.31                      | 0.17      |
| CuO                            | 713.7             | 2.74 | -1.14                           | -1.09             | Т    | 3.20                                     | 3.35                                  | -0.15     | -0.88                     | 0.15      |
| $Y_2O_3$                       | 837.2             | 3.33 | -0.77                           | -0.64             | Т    | 2.87                                     | 3.13                                  | -0.26     | -1.51                     | 0.10      |
| Bi <sub>2</sub> O <sub>3</sub> | 1137.4            | 2.91 | 0.10                            | -0.96             | Т    | 2.82                                     | 2.87                                  | -0.05     | -0.32                     | 0.31      |
| In <sub>2</sub> O <sub>3</sub> | 1271.1            | 3.75 | 0.50                            | -0.32             | Т    | 2.81                                     | 2.62                                  | 0.19      | 1.05                      | 0.20      |
| Al <sub>2</sub> O <sub>3</sub> | 1187.8            | 5.56 | 0.25                            | 1.06              | Т    | 2.49                                     | 2.46                                  | 0.03      | 0.14                      | 0.23      |
| Fe <sub>2</sub> O <sub>3</sub> | 1363.4            | 5.46 | 0.77                            | 0.98              | Т    | 2.29                                     | 2.25                                  | 0.04      | 0.19                      | 0.13      |
| SnO <sub>2</sub>               | 1717.3            | 5.80 | 1.80                            | 1.24              | Т    | 2.01                                     | 1.89                                  | 0.12      | 0.65                      | 0.29      |
| TiO <sub>2</sub>               | 1575.7            | 6.56 | 1.39                            | 1.83              | Т    | 1.74                                     | 1.95                                  | -0.21     | -1.22                     | 0.29      |
| $V_2O_3$                       | 1097.7            | 4.69 | -0.01                           | 0.40              | Т    | 3.14                                     | 2.69                                  | 0.45      | 2.52                      | 0.10      |
| Sb <sub>2</sub> O <sub>3</sub> | 1233.1            | 3.95 | 0.38                            | -0.17             | Т    | 2.64                                     | 2.62                                  | 0.02      | 0.08                      | 0.13      |
| ZrO <sub>2</sub>               | 1357.7            | 5.56 | 0.75                            | 1.06              | Т    | 2.15                                     | 2.31                                  | -0.16     | -0.94                     | 0.14      |
| CoO                            | 594.6             | 3.08 | -1.48                           | -0.84             | Т    | 3.51                                     | 3.39                                  | 0.12      | 0.65                      | 0.25      |
| NiO                            | 596.9             | 2.90 | -1.48                           | -0.97             | Т    | 3.45                                     | 3.42                                  | 0.03      | 0.14                      | 0.22      |
| Cr <sub>2</sub> O <sub>3</sub> | 1266.6            | 4.84 | 0.48                            | 0.51              | Т    | 2.51                                     | 2.48                                  | 0.03      | 0.14                      | 0.08      |
| La <sub>2</sub> O <sub>3</sub> | 1017.2            | 2.91 | -0.25                           | -0.96             | Т    | 2.87                                     | 3.04                                  | -0.17     | -1.00                     | 0.19      |
| Co <sub>3</sub> O <sub>4</sub> | 811.1             | 4.60 | -0.85                           | 0.33              | V    | 3.00                                     | 2.94                                  | 0.06      | 0.31                      | 0.36      |
| Mn <sub>2</sub> O <sub>3</sub> | 1018.0            | 5.17 | -0.25                           | 0.77              | V    | 3.08                                     | 2.77                                  | 0.36      | 2.01                      | 0.28      |

\* *T* – training set; *V* – validation set;  $\Delta H_{me+}$  – the enthalpy of formation of a gaseous cation; *Z*/*r* – polarization force parameters.



Figure S2. Euclidean distance matrix between the training (indicated in tomato color) and validation (indicated in gray color) compounds. The color intensity and shape of the ellipses displayed in the upper triangular part of a distance matrix reflect the values of the corresponding Euclidean distances expressed in numerical forms in the lower triangular part of this matrix. The smallest Euclidean distances (indicated as big circles) are considered as significant. In contrast, the highest distances that reflect the dissimilarity between compounds are considered as insignificant and shown as a thin ellipse.

| MeOx                                        | Average<br>Euclidean<br>distance | Standardized<br>residuals | Set |
|---------------------------------------------|----------------------------------|---------------------------|-----|
| ZnO                                         | 1.91                             | 0.31                      | 1   |
| CuO                                         | 1.82                             | -0.88                     | 1   |
| <b>Y</b> <sub>2</sub> <b>O</b> <sub>3</sub> | 1.52                             | -1.51                     | 1   |
| Bi <sub>2</sub> O <sub>3</sub>              | 1.57                             | -0.32                     | 1   |
| In <sub>2</sub> O <sub>3</sub>              | 1.42                             | 1.05                      | 1   |
| Al <sub>2</sub> O <sub>3</sub>              | 1.63                             | 0.14                      | 1   |
| Fe <sub>2</sub> O <sub>3</sub>              | 1.66                             | 0.19                      | 1   |
| SnO <sub>2</sub>                            | 2.43                             | 0.65                      | 1   |
| TiO <sub>2</sub>                            | 2.51                             | -1.22                     | 1   |
| $V_2O_3$                                    | 1.37                             | 2.52                      | 1   |
| Sb <sub>2</sub> O <sub>3</sub>              | 1.36                             | 0.08                      | 1   |
| ZrO <sub>2</sub>                            | 1.69                             | -0.94                     | 1   |
| CoO                                         | 1.93                             | 0.65                      | 1   |
| NiO                                         | 1.97                             | 0.14                      | 1   |
| Cr <sub>2</sub> O <sub>3</sub>              | 1.42                             | 0.14                      | 1   |
| $La_2O_3$                                   | 1.54                             | -1.00                     | 1   |
| C0 <sub>3</sub> O <sub>4</sub>              | 1.57                             | 0.31                      | 2   |
| Mn <sub>2</sub> O <sub>3</sub>              | 1.49                             | 2.01                      | 2   |

<u>**Table S5.**</u> Input matrix data for 95% and 99% confidence interval boundaries estimation using the Student's *t*-distribution and developed in-house *R*-code



<u>**Table S6.**</u> Results on the applicability domain determination using: range-based method, geometrical-based method, distance-based method and standardization approach

### Case Study 3

<u>**Table S7.**</u> Descriptors used for Nano-QSAR model development along with experimentally observed and predicted values of nanotoxicity to HaCaT cells for training and validation compounds (MeOx NPs) reported by Pan *et al.*<sup>[3]</sup>

| MeOx                           | DCW<br>(1,3) | Autoscaled<br>DCW(1,3) | Set* | Experimental<br>log(1/LC <sub>50</sub> ) | Predicted<br>log(1/LC <sub>50</sub> ) | Residuals | Standardized<br>cross-validated<br>residuals | Leverages |
|--------------------------------|--------------|------------------------|------|------------------------------------------|---------------------------------------|-----------|----------------------------------------------|-----------|
| Al <sub>2</sub> O <sub>3</sub> | 20.32        | -1.82                  | Т    | 1.85                                     | 1.82                                  | 0.03      | -0.01                                        | 0.35      |
| Bi <sub>2</sub> O <sub>3</sub> | 26.58        | -0.12                  | Т    | 2.50                                     | 2.47                                  | 0.03      | -0.10                                        | 0.08      |
| Cr <sub>2</sub> O <sub>3</sub> | 24.77        | -0.61                  | Т    | 2.30                                     | 2.28                                  | 0.02      | -0.18                                        | 0.11      |
| In <sub>2</sub> O <sub>3</sub> | 31.20        | 1.13                   | Т    | 2.92                                     | 2.95                                  | -0.03     | -0.54                                        | 0.18      |
| $La_2O_3$                      | 30.57        | 0.96                   | Т    | 2.87                                     | 2.88                                  | -0.01     | -0.42                                        | 0.15      |
| NiO                            | 28.85        | 0.49                   | Т    | 2.49                                     | 2.70                                  | -0.21     | -1.86                                        | 0.10      |
| $Sb_2O_3$                      | 25.06        | -0.54                  | Т    | 2.31                                     | 2.31                                  | 0.00      | -0.32                                        | 0.10      |
| SnO <sub>2</sub>               | 28.62        | 0.43                   | Т    | 2.67                                     | 2.68                                  | -0.01     | -0.40                                        | 0.09      |
| $V_2O_3$                       | 24.20        | -0.77                  | Т    | 2.24                                     | 2.22                                  | 0.02      | -0.19                                        | 0.13      |
| WO <sub>3</sub>                | 27.41        | 0.10                   | Т    | 2.56                                     | 2.55                                  | 0.01      | -0.28                                        | 0.08      |
| ZnO                            | 33.34        | 1.71                   | Т    | 3.32                                     | 3.17                                  | 0.15      | 1.11                                         | 0.32      |
| ZrO <sub>2</sub>               | 22.16        | -1.32                  | Т    | 2.02                                     | 2.01                                  | 0.01      | -0.24                                        | 0.22      |
| Mn <sub>2</sub> O <sub>3</sub> | 28.31        | 0.35                   | Т    | 2.64                                     | 2.65                                  | -0.01     | -0.38                                        | 0.09      |
| CoO                            | 25.85        | -0.32                  | V    | 2.83                                     | 2.39                                  | 0.44      | 2.51                                         | 0.09      |
| Fe <sub>2</sub> O <sub>3</sub> | 21.79        | -1.42                  | V    | 2.05                                     | 1.97                                  | 0.08      | 0.18                                         | 0.24      |
| SiO <sub>2</sub>               | 21.06        | -1.62                  | V    | 2.12                                     | 1.90                                  | 0.23      | 1.13                                         | 0.30      |
| TiO <sub>2</sub>               | 21.28        | -1.56                  | V    | 1.76                                     | 1.92                                  | -0.16     | -1.35                                        | 0.28      |
| Y <sub>2</sub> O <sub>3</sub>  | 21.64        | -1.46                  | V    | 2.21                                     | 1.96                                  | 0.26      | 1.33                                         | 0.26      |

\* T – training set; V – validation set; DCW(1,3) – SMILES-based optimal molecular descriptor which includes: aggregation size; individual size; mass percentage of metal elements; cationic charge and molecular weight.



**Figure S3.** Euclidean distance matrix between the training (indicated in purple color) and validation (indicated in seagreen color) compounds. The color intensity and shape of the ellipses displayed in the upper triangular part of a distance matrix reflect the values of the corresponding Euclidean distances expressed in numerical forms in the lower triangular part of this matrix. The smallest Euclidean distances (indicated as big circles) are considered as significant. In contrast, the highest distances that reflect the dissimilarity between compounds are considered as insignificant and shown as a thin ellipse.

| MeOx                           | Average<br>Euclidean<br>distance | Standardized<br>cross-validated<br>residuals | Set |
|--------------------------------|----------------------------------|----------------------------------------------|-----|
| Al <sub>2</sub> O <sub>3</sub> | 1.97                             | -0.01                                        | 1   |
| Bi <sub>2</sub> O <sub>3</sub> | 0.87                             | -0.10                                        | 1   |
| Cr <sub>2</sub> O <sub>3</sub> | 1.01                             | -0.18                                        | 1   |
| In <sub>2</sub> O <sub>3</sub> | 1.32                             | -0.54                                        | 1   |
| $La_2O_3$                      | 1.19                             | -0.42                                        | 1   |
| NiO                            | 0.92                             | -1.86                                        | 1   |
| Sb <sub>2</sub> O <sub>3</sub> | 0.98                             | -0.32                                        | 1   |
| SnO <sub>2</sub>               | 0.90                             | -0.40                                        | 1   |
| $V_2O_3$                       | 1.10                             | -0.19                                        | 1   |
| WO <sub>3</sub>                | 0.85                             | -0.28                                        | 1   |
| ZnO                            | 1.85                             | 1.11                                         | 1   |
| ZrO <sub>2</sub>               | 1.51                             | -0.24                                        | 1   |
| Mn <sub>2</sub> O <sub>3</sub> | 0.88                             | -0.38                                        | 1   |
| CoO                            | 0.85                             | 2.51                                         | 2   |
| Fe <sub>2</sub> O <sub>3</sub> | 1.48                             | 0.18                                         | 2   |
| SiO <sub>2</sub>               | 1.65                             | 1.13                                         | 2   |
| TiO <sub>2</sub>               | 1.60                             | -1.35                                        | 2   |
| Y <sub>2</sub> O <sub>3</sub>  | 1.51                             | 1.33                                         | 2   |

<u>**Table S8.**</u> Input matrix data for 95% and 99% confidence interval boundaries estimation using the Student's *t*-distribution and developed in-house *R*-code



# <u>**Table S9.**</u> Results on the applicability domain determination using: range-based method, geometrical-based method, distance-based method and standardization approach

### Case Study 4

<u>**Table S10.**</u> Descriptors used for read-across model development along with experimentally observed and predicted values of nanotoxicity to *E. coli* bacteria for training and validation compounds (MeOx NPs) reported by Gajewicz<sup>[4]</sup>

| MeOx                                        | ΔH <sub>Me+</sub><br>[kcal/mol] | Autoscaled<br>ΔH <sub>Me+</sub> | Set* | Experimental log(EC <sub>50</sub> ) <sup>-1</sup> | Predicted<br>log(EC <sub>50</sub> ) <sup>-1</sup> | Residuals | Standardized<br>residuals | Leverages |
|---------------------------------------------|---------------------------------|---------------------------------|------|---------------------------------------------------|---------------------------------------------------|-----------|---------------------------|-----------|
| TiO <sub>2</sub>                            | 1575.73                         | 1.11                            | Т    | 1.74                                              | 2.10                                              | -0.36     | -1.56                     | 0.35      |
| SnO <sub>2</sub>                            | 1717.32                         | 1.43                            | Т    | 2.01                                              | 1.81                                              | 0.20      | 1.06                      | 0.49      |
| Sb <sub>2</sub> O <sub>3</sub>              | 1233.06                         | 0.32                            | Т    | 2.64                                              | 2.56                                              | 0.08      | 0.51                      | 0.16      |
| <b>Y</b> <sub>2</sub> <b>O</b> <sub>3</sub> | 837.15                          | -0.58                           | Т    | 2.87                                              | 3.16                                              | -0.29     | -1.24                     | 0.20      |
| La <sub>2</sub> O <sub>3</sub>              | 1017.22                         | -0.17                           | Т    | 2.87                                              | 2.78                                              | 0.09      | 0.56                      | 0.15      |
| ZnO                                         | 662.44                          | -0.99                           | Т    | 3.45                                              | 3.45                                              | 0.00      | 0.11                      | 0.30      |
| CoO                                         | 601.80                          | -1.12                           | Т    | 3.51                                              | 3.42                                              | 0.09      | 0.55                      | 0.35      |
| ZrO <sub>2</sub>                            | 1357.66                         | 0.61                            | V    | 2.15                                              | 2.41                                              | -0.26     | -1.12                     | 0.20      |
| SiO <sub>2</sub>                            | 1686.38                         | 1.36                            | V    | 2.20                                              | 1.99                                              | 0.21      | 1.10                      | 0.45      |
| Fe <sub>2</sub> O <sub>3</sub>              | 1408.29                         | 0.73                            | V    | 2.29                                              | 2.16                                              | 0.13      | 0.75                      | 0.23      |
| Al <sub>2</sub> O <sub>3</sub>              | 1187.83                         | 0.22                            | V    | 2.49                                              | 2.65                                              | -0.16     | -0.65                     | 0.15      |
| Cr <sub>2</sub> O <sub>3</sub>              | 1268.70                         | 0.41                            | V    | 2.51                                              | 2.65                                              | -0.14     | -0.51                     | 0.17      |
| In <sub>2</sub> O <sub>3</sub>              | 1271.13                         | 0.41                            | V    | 2.81                                              | 2.65                                              | 0.16      | 0.89                      | 0.17      |
| Bi <sub>2</sub> O <sub>3</sub>              | 1137.40                         | 0.10                            | V    | 2.82                                              | 2.73                                              | 0.09      | 0.53                      | 0.14      |
| $V_2O_3$                                    | 1097.73                         | 0.01                            | V    | 3.14                                              | 2.81                                              | 0.33      | 1.66                      | 0.14      |
| CuO                                         | 706.25                          | -0.89                           | V    | 3.20                                              | 3.46                                              | -0.26     | -1.10                     | 0.27      |
| NiO                                         | 596.70                          | -1.14                           | V    | 3.45                                              | 3.51                                              | -0.06     | -0.16                     | 0.36      |

\* T – training set; V – validation set;  $\Delta H_{Me+}$  – the enthalpy of the formation of gaseous cations having the same oxidation state as that in the metal oxide structure.



Figure S4. Euclidean distance matrix between the training (indicated in navy color) and validation (indicated in maroon color) compounds. The color intensity and shape of the ellipses displayed in the upper triangular part of a distance matrix reflect the values of the corresponding Euclidean distances expressed in numerical forms in the lower triangular part of this matrix. The smallest Euclidean distances (indicated as big circles) are considered as significant. In contrast, the highest distances that reflect the dissimilarity between compounds are considered as insignificant and shown as a thin ellipse.

| MeOx                                        | Average<br>Euclidean<br>distance | Standardized<br>residuals | Set |
|---------------------------------------------|----------------------------------|---------------------------|-----|
| TiO <sub>2</sub>                            | 1.40                             | -1.56                     | 1   |
| SnO <sub>2</sub>                            | 1.67                             | 1.06                      | 1   |
| Sb <sub>2</sub> O <sub>3</sub>              | 1.01                             | 0.51                      | 1   |
| <b>Y</b> <sub>2</sub> <b>O</b> <sub>3</sub> | 0.99                             | -1.24                     | 1   |
| La <sub>2</sub> O <sub>3</sub>              | 0.93                             | 0.56                      | 1   |
| ZnO                                         | 1.20                             | 0.11                      | 1   |
| CoO                                         | 1.31                             | 0.55                      | 1   |
| ZrO <sub>2</sub>                            | 0.99                             | -1.12                     | 2   |
| SiO <sub>2</sub>                            | 1.38                             | 1.10                      | 2   |
| Fe <sub>2</sub> O <sub>3</sub>              | 1.04                             | 0.75                      | 2   |
| Al <sub>2</sub> O <sub>3</sub>              | 0.85                             | -0.65                     | 2   |
| Cr <sub>2</sub> O <sub>3</sub>              | 0.90                             | -0.51                     | 2   |
| In <sub>2</sub> O <sub>3</sub>              | 0.90                             | 0.89                      | 2   |
| Bi <sub>2</sub> O <sub>3</sub>              | 0.83                             | 0.53                      | 2   |
| $V_2O_3$                                    | 0.82                             | 1.66                      | 2   |
| CuO                                         | 0.98                             | -1.10                     | 2   |
| NiO                                         | 1.14                             | -0.16                     | 2   |

 Table S11.
 Input matrix data for 95% and 99% confidence interval boundaries estimation using the Student's *t*-distribution and developed in-house *R*-code



|                       |                 | o [    | O Training set  Validation set         |             |              |     |             |      |        |          | Basic theory of the standardization approach |           |           |                |         |      |    |                                 |     |                  |
|-----------------------|-----------------|--------|----------------------------------------|-------------|--------------|-----|-------------|------|--------|----------|----------------------------------------------|-----------|-----------|----------------|---------|------|----|---------------------------------|-----|------------------|
|                       |                 | 2.     |                                        |             |              |     |             |      |        |          |                                              |           |           |                |         |      |    | MeOx                            | Set | AD Info.         |
|                       |                 | 1 -    | 0                                      | 0           |              |     |             |      |        | ш        |                                              |           |           |                |         |      |    | TiO <sub>2</sub>                | Т   | not an X-outlier |
|                       | <u></u>         | -      |                                        |             | 0            |     |             |      |        |          |                                              |           |           |                | _       |      |    | SnO <sub>2</sub>                | Т   | not an X-outlier |
| Range-based           | δH <sub>M</sub> | 0 -    |                                        |             |              |     | 0           |      |        |          |                                              |           |           |                |         |      |    | $\mathbf{Sb}_{2}\mathbf{O}_{3}$ | Т   | not an X-outlier |
| approach              |                 | -1 -   |                                        |             |              | 0   |             | ່ວ   | ,      |          |                                              |           |           |                |         |      |    | Y <sub>2</sub> O <sub>3</sub>   | Т   | not an X-outlier |
|                       |                 |        |                                        |             |              |     |             |      |        |          |                                              |           |           |                |         |      |    | La <sub>2</sub> O <sub>3</sub>  | Т   | not an X-outlier |
|                       |                 | -2     |                                        |             |              |     |             |      |        |          |                                              |           |           | -              |         |      |    | ZnO                             | Т   | not an X-outlier |
|                       |                 |        | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 0%          | 0°° (        |     |             | S C  | ^°`    | \$<br>\$ |                                              | °°<br>₹°¢ |           | 0° 0<br>10° 00 | ç, 7,   | ິເຈັ | Å. | CoO                             | Т   | not an X-outlier |
|                       |                 |        |                                        |             |              |     |             |      |        |          |                                              |           |           |                |         |      |    | ZrO <sub>2</sub>                | V   | within AD        |
|                       |                 | 1 25 - |                                        |             |              |     | c           | ) Tr | aining | g set    |                                              | Vali      | datior    | n set          | :       |      |    | SiO <sub>2</sub>                | V   | within AD        |
|                       | e               | 1.20   |                                        |             |              |     |             |      |        |          |                                              |           |           |                |         |      |    | Fe <sub>2</sub> O <sub>3</sub>  | V   | within AD        |
| Distance-based        | Jistar          | 1.00 - |                                        | 0           |              |     |             |      |        | C        | 1                                            |           |           |                |         |      |    | Al <sub>2</sub> O <sub>3</sub>  | V   | within AD        |
| approach<br>(based on | sed D           | 0.75 - | 0                                      |             |              |     |             |      |        |          |                                              |           |           |                |         |      |    | Cr <sub>2</sub> O <sub>3</sub>  | V   | within AD        |
| distance scores       | rmali           | 0.50 - | Ŭ                                      |             |              |     |             |      | 0      |          |                                              |           |           |                |         |      |    | In <sub>2</sub> O <sub>3</sub>  | V   | within AD        |
| Euclidean             | n No            | 0 25 - |                                        |             |              |     |             | 0    | 0      | 5        | 0                                            |           |           |                |         | C    | ו  | Bi <sub>2</sub> O <sub>3</sub>  | V   | within AD        |
| distance norm)        | Near<br>Mear    | 5.20   |                                        |             | 0            | 0   |             |      |        |          |                                              |           |           |                |         |      |    | $V_2O_3$                        | V   | within AD        |
|                       |                 | 0.00 - | - 01                                   | - 0.        | - 0          | - 0 | •           | 0    |        | 0        | 0 0                                          | 0         | - 0       | - 0            | - 0     |      |    | CuO                             | V   | within AD        |
|                       |                 |        | 200                                    | 0<br>5<br>7 | 0°.'<br>0''' | Ő,  | 0°.<br>^~^^ | 50   | × √    | 0. °C    | 400                                          | × 000     | ر<br>کی ج | ر<br>م<br>م    | 5° ~ 2° |      | Å. | NiO                             | V   | within AD        |

### References

- 1. Pathakoti, K.; Huang, M. J.; Watts, J. D.; He, X.; Hwang, H. M., Using experimental data of Escherichia coli to develop a QSAR model for predicting the photo-induced cytotoxicity of metal oxide nanoparticles. *Journal of photochemistry and photobiology. B, Biology* **2014**, *130*, 234-40.
- Mu, Y.; Wu, F.; Zhao, Q.; Ji, R.; Qie, Y.; Zhou, Y.; Hu, Y.; Pang, C.; Hristozov, D.; Giesy, J. P.; Xing, B., Predicting Toxic Potencies of Metal Oxide Nanoparticles by Means of Nano-QSARs. *Nanotoxicology* 2016, 10, 1207-1214.
- 3. Pan, Y.; Li, T.; Cheng, J.; Telesca, D.; Zink, J. I.; Jiang, J., Nano-QSAR modeling for predicting the cytotoxicity of metal oxide nanoparticles using novel descriptors. *RSC Advances* **2016**, *6*, 25766-25775.
- 4. Gajewicz, A., What if the number of nanotoxicity data is too small for developing predictive Nano-QSAR models? An alternative read-across based approach for filling data gaps. *Nanoscale* **2017**, *9*, 8435-8448.