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 23 

Figure S1. Magnetic separation of the single-walled carbon nanotube-iron oxide 24 

nanocomposite material from solution, monitored at 800 nm.  25 
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 27 

Figure S2. Schematic diagram of nanocomposite exposure and recycling (scheme 28 

illustrates one entire cycle).     29 
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Material characterization 30 

The morphologies and sizes of the single-walled carbon nanotubes (SWCNTs), iron 31 

oxide nanoparticles (NPs) and SWCNT-iron oxide nanocomposite are presented in 32 

Figure S3. The iron oxide NPs are generally spherical with diameters ranging between 33 

3 to 40 nm. The nanocomposite material unveils an intertwined network of SWCNTs 34 

embedded with clusters of iron oxide nanoparticles (diameters ranging between 5 to 60 35 

nm). The surface area, mesopore, and micropore volumes of the nanocomposite 36 

material decreased in comparison to the SWCNTs from 443 to 240 m2 g-1, 1.1 to 0.71 37 

cm3 g-1 and 0.22 to 0.12 cm3 g-1, respectively. Thermal gravimetric analysis of the bare 38 

SWCNTs, iron oxide NPs and SWCNT-iron oxide nanocomposite material recorded 39 

mass losses of 86 ± 8%, 2 ± 1% and 37 ± 4%, respectively (representative thermograms 40 

are shown in Figure S4). This indicates that the purity of the iron oxide NPs is 98% and 41 

that the mass percentage of iron oxide in the nanocomposite material is 63 ± 4%. In 42 

accordance, elemental analysis revealed the mass carbon percentage in the 43 

nanocomposite as 38 ± 1%. 44 

The broad band at ~3380 cm-1 in the FTIR spectra of the iron oxide NPs and 45 

SWCNT-iron oxide nanocomposite material is attributed to the O–H stretching 46 

vibration originating from surface hydroxyl groups (Figure S5). In the iron oxide-47 

SWCNT nanocomposite material spectrum the two peaks at 1630 and 1589 cm-1 may 48 

be assigned to C=O and C=C stretching, respectively. Moreover, the stretching 49 

vibration of C–O is observed at 1383 and 1052 cm-1. The peak at ~570 cm-1 in the 50 

spectra of the iron oxide NPs and iron oxide-SWCNT nanocomposite material is 51 

ascribed to the vibration of Fe–O in magnetite.1–3 However, the additional peak at 632 52 

cm-1 in the iron oxide spectrum likely arises from the presence of maghemite.4 The X-53 

ray diffractograms of the SWCNTs, iron oxide NPs and SWCNT-iron oxide 54 



nanocomposite material demonstrate the co-existence of SWCNTs and iron oxides in 55 

the nanocomposite (Figure S6). The peaks at 2θ=30.2o, 35.5o, 53.5o, 57.2o and 62.9o are 56 

characteristic of magnetite and/or maghemite2,5,6 whereas the peak at 2θ=26.4o is 57 

related to the SWCNTs. The peak at 43.2o may be ascribed to both the SWCNTs and 58 

the iron oxide NPs. Figure S7 exhibits the deconvoluted X-ray electron spectra of Fe 59 

2p for the iron oxide NPs and iron oxide SWCNT nanocomposite. The peaks of Fe 60 

2p1/2 and Fe 2p3/2 found at 710.9 and 724.5 eV in the spectrum of the iron oxide NPs 61 

and at 711.2 and 724.6 eV in the spectrum of the nanocomposite are indicative of a 62 

mixture of magnetite and maghemite, respectively. Moreover, a satellite peak at ~719 63 

eV is typical of maghemite.3,7,8 The O/Fe and C/O/Fe atomic ratios are 2.9:1.0 and 64 

8.5:3.2:1.0 in the iron oxide and iron oxide-SWCNT nanocomposite material, 65 

respectively.  66 

The magnetic properties of the iron oxide NPs and iron oxide-SWCNT 67 

nanocomposite material are presented in Figure S8. The magnetization saturation of the 68 

iron oxide NPs and the nanocomposite material were 126.7 and 40.71 emu g-1, 69 

respectively, similar to values reported in additional studies.1,5,9 The facile magnetic 70 

separation of the nanocomposite material is illustrated in the photograph (Figure S8). 71 
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 88 

 Figure S3. Scanning electron microscopy images of single walled carbon nanotubes 89 

(SWCNTs), iron oxide nanoparticles and the SWCNT-iron oxide nanocomposite.  90 
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 92 

Figure S4. Representative thermograms of the iron oxide nanoparticles, single-walled 93 

carbon nanotubes (SWCNTs) and SWCNT-iron oxide nanocomposite.  94 
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 96 

Figure S5. Fourier transform infrared spectra of the single-walled carbon nanotubes 97 

(SWCNTs), iron oxide nanoparticles and the SWCNT-iron oxide nanocomposite.  98 
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 100 

Figure S6. X-ray diffractograms of the single-walled carbon nanotubes (SWCNTs), 101 

iron oxide nanoparticles and the SWCNT-iron oxide nanocomposite.  102 
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 104 

Figure S7. Deconvoluted X-ray electron spectra of Fe 2p for the iron oxide 105 

nanoparticles and single-walled carbon nanotube (SWCNT)-iron oxide nanocomposite.  106 
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 108 

Figure S8. Magnetization curves of the iron oxide nanoparticles and single-walled 109 

carbon nanotube (SWCNT)-iron oxide nanocomposite. In the photograph: magnetic 110 

separation of the nanocomposite (left) compared to the bare SWCNTs (right).  111 
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 114 

Figure S9. Levels of live E. coli (MG1655) in solution before and after exposure to the 115 

single-walled carbon nanotube (SWCNT)-iron oxide nanocomposite, iron oxide 116 

nanoparticles and pristine SWCNTs. 117 
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 119 

Figure S10. Representative fluorescence microscopy imaging of the single-walled 120 

carbon nanotube-iron oxide nanocomposite following interaction with the BW25113 121 

ΔrfaC strain. Live and dead cells appear in green and red, respectively.   122 
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 125 

Figure S11. Removal efficiency of E. coli by the single-walled carbon nanotube-iron 126 

oxide nanocomposite following three sequential exposure cycles (results normalized to 127 

the efficiency of the first exposure cycle).   128 
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 130 

Figure S12. Representative fluorescence microscopy imaging of the single-walled 131 

carbon nanotube-iron oxide nanocomposite after the washing procedure (following the 132 

first exposure cycle). Live and dead cells appear in green and red, respectively.   133 
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