Supporting Information

Ni-Mn LDH decorated 3D Fe-inserted and N-doped carbon frameworks composites for efficient uranium (VI) removal

Jiahui Zhu,^a Qi Liu,^{*a} Jingyuan Liu,^a Rongrong Chen,^a Hongsen Zhang,^a Rumin Li, ^{*a,c} and Jun Wang,^{a, b}

^c College of Materials Science and Chemical Engineering, Harbin Engineering University, 150001, China.

* Corresponding author: Tel.: +86 451 8253 3026; Fax: +86 451 8253 3026; E-mail: zhqw1888@sohu.com.

^a Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin

^{150001,} China. Fax: +86 451 8253 3026; Tel: +86 451 8253 3026; E-mail address: zhqw1888@sohu.com

^b Institute of Advanced Marine Materials, Harbin Engineering University, 150001, China.

Characterization

Materials Characterization

The morphology of the samples was characterized withanning electron microscope (SEM, JEOLJSM-6480A microscope) and transmission electron microscopy (TEM) on a FEI Tecnai G2 S-Twin with an accelerating voltage of 200 kV. The texture and surface properties of the samples were measured by nitrogen adsorption isotherms using an AUTOSORB-IQ2-MP analyzer and ESCALAB 250Xi X-ray photoelectron spectrometer. The samples were analyzed by X-ray diffraction (XRD) which was performed on a Rigaku D/max-IIIB diffractometer with Cu K α irradiation ($\lambda = 1.54178$ Å). The X-ray source was operated at 40 kV and the current used in XRD measurements was 150 mA. Fourier-transform infrared (FT-IR) spectra were recorded with an AVATAR 360 FT-IR spectrophotometer (resolution 4 cmÀ1) using standard KBr pellets. The magnetic measurement was carried out with a vibrating sample magnetometer (VSM, Lanzhou University LakeShore 7304).

Adsorption Measurement

The uranium (VI) concentration was analyzed using the inductively coupled plasma atomic emission spectrometer (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS), which were analyzed by IRIS Intrepid II XSP and X Series instrument, respectively.

Fig. S1. ζ-Potential of Fe-NCNF-LDH sample at different pH values.

Fig. S2 Intra-particle diffusion kinetics for the adsorption of uranyl ions on Fe-NCNF and Fe-NCNF-LDH.

Fig. S3 Magnetic hysteresis curves and magnetic separation picture (inset) of

Fe-NCNF-LDH.

Fig. S4 XPS spectra (a), Ni 2p spectra (b), Mn 2p spectra (c) of Fe-NCNF-LDH and

Fe-NCNF-LDH-U.

Fig. S5. Effect of coexisting anions on the adsorption of uranium (VI) by the

Fe-NCNF-LDH.

T(V)	Pseudo-first-order			Pseudo-second-order		
<i>I</i> (K)	k1(min ⁻¹)	$q_e (mg g^{-l})$	$\log g^{-1}$) R^2 $k_2 (mg min)$	k2 (mg min)	$q_e (mg \ g^{-l})$	\mathbb{R}^2
Fe-NCNF	0.066	274.1824	0.919	0.0003	301.9573	0.956
Fe-NCNF-LDH	0.0412	382.5334	0.969	0.0001	434.9932	0.977

Table S1. Pseudo-first-order and pseudo-second-order constants and values of R^2 for Fe-NCNF-LDH.

Table S2 Parameters of the intra-particle diffusion model of uranium (VI) adsorption on Fe-NCNF and Fe-NCNF-LDH.

	k_{p1}	R_1^2	k_{p2}	R_2^2	k _{p3}	R_3^2
Fe-NCNF	52.07	0.93	24.28	0.97	0.78	0.98
Fe-NCNF-LDH	86.21	0.99	26.54	0.99	8.36	0.94

Table S3. Isotherm constants and values of R^2 for Fe-NCNF-LDH.

T(K) -	Lang	Langmuir isotherm			Freundich isotherm		
	$q_m (mg \cdot g^{-1})$	b (L·mg ⁻¹)	R ²	$K (L \cdot g^{-l})$	n	\mathbb{R}^2	
298	598.497	0.002	0.977	77.601	0.013	0.915	
308	769.532	0.001	0.971	139.402	0.007	0.837	
318	851.607	0.001	0.931	229.083	0.004	0.652	

Table. S4 The maximum adsorption capacity of different adsorbents for uranium (VI).

	Adsorption		
Adsorbents	Capacity	Conditions	Ref.
	mg-U/g-		
Fe ₃ O ₄ @SiO ₂ magnetic composites	ad 52 rbent	<i>T</i> = 298 К, <i>pH</i> =6.0	[1]
Graphene oxide-manganese	185.2	T = 298 К, pH =	[2]
dioxide Fe(II)-Al(III) layered	00.01	3.8	[2]
double hydroxides	<i>99.01</i> 5.0		[3]
PAF magnetic sorbent	115.3	<i>T</i> = 298 <i>К</i> , <i>pH</i> =6.0	[4]
LDH@MMT	33	T = 298 К, pH =5 Т	[5]
AO-g-MWCNTs	145	= 298.15K, pH=9 T	[6]
GO	299	= 298 K, pH = 4.5	[7]
Layered double	277.00	RT. pH = 4	501
hydroxide/graphene	277.80		[8]
Fe-NCNF-LDH	598.50 $T = 298 K, pH = 4$		this work
		T = 298 K, pH = 7	

 T (K)
 ΔG (kJ/mol)
 ΔH (kJ/mol)
 ΔS (J/(mol·K))

 298
 -79.66

 308
 -82.34
 77.76
 267.57

 318
 -85.01

Table S5. Thermodynamics parameters for uranium (VI) adsorption on Fe-NCNF-LDH.

Table S6 Selected results for the extraction of uranyl ions from simulated seawater

	Ion concent	Removal		
Elements	initial	final	(%)	
U	3.227	0.102	96.84	
Fe	118.3	63.9	45.98	
Al	14.42	8.333	42.21	
Na	$1.667*10^4$	$1.202*10^4$	38.68	
V	0.537	0.389	27.56	
Ca	9.903*10 ³	7.072*10 ³	28.59	
Mg	6.521*10 ³	5.504*10 ³	15.6	
Cu	52.33	50.18	4.11	
Ba	90.46	88.3	2.39	
Zn	38.95	38.88	0.18	

References

- 1. F.-L. Fan, Z. Qin, J. Bai, W.-D. Rong, F.-Y. Fan, W. Tian, X.-L. Wu, Y. Wang and L. Zhao, *Journal of environmental radioactivity*, 2012, **106**, 40-46.
- 2. N. Pan, L. Li, J. Ding, S. Li, R. Wang, Y. Jin, X. Wang and C. Xia, *Journal of hazardous materials*, 2016, **309**, 107-115.
- 3. L. Xie, Y. Zhong, R. Xiang, G. Fu, Y. Xu, Y. Cheng, Z. Liu, T. Wen, Y. Zhao and X. Liu, *Chemical Engineering Journal*, 2017, **328**, 574-584.

4. T. A. Saleh, M. Tuzen and A. Sachemical Engineering Research and Design, 2017, **117**, 218-227.

5. H. Seddighi, A. K. Darban, A. Khanchi, J. Fasihi and J. Koleini, *Journal of Radioanalytical and Nuclear Chemistry*, 2017, **314**, 415-427.

6. Y. Wang, Z. Gu, J. Yang, J. Liao, Y. Yang, N. Liu and J. Tang, *Applied Surface Science*, 2014, **320**, 10-20.

7. Z. Li, F. Chen, L. Yuan, Y. Liu, Y. Zhao, Z. Chai and W. Shi, *Chemical Engineering Journal*, 2012, **210**, 539-546.

8. L. Tan, Y. Wang, Q. Liu, J. Wang, X. Jing, L. Liu, J. Liu and D. Song, *Chemical Engineering Journal*, 2015, **259**, 752-760.