1	
2	
3	
4	
5	
6	
7	
8	Life Cycle Impact of Nanosilver Polymers-Food Storage
9	Containers as a Case Study
10	Supplemental Information
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	

Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2018

Environmental Science: Nano Journal

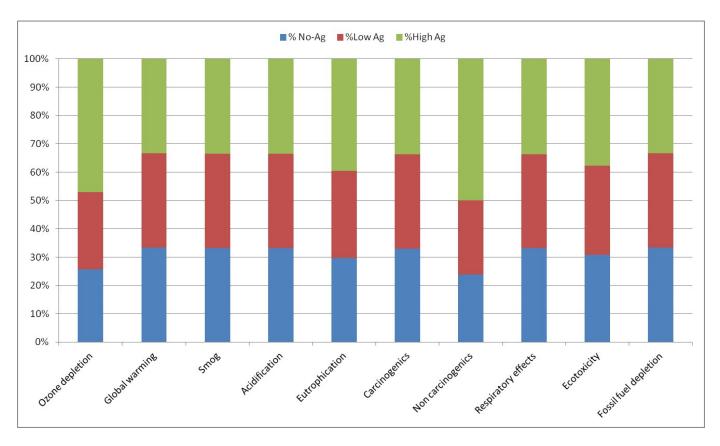
1 Table S1: LCA inventory data

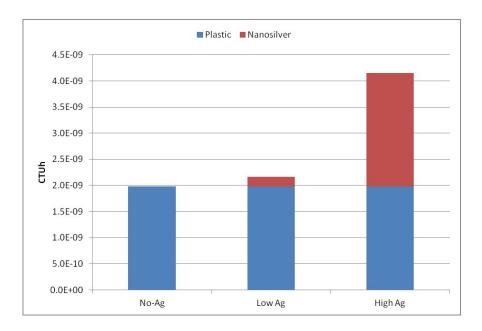
	Inputs	Outputs	Sima Pro Reference	Database
	1 kg of AgNP = 1.57 kg silver nitrate + 0.35 kg soo	lium borohydride		
	1 kg silver nitrate		-	
	0.49 kg nitric acid		Nitric acid, in water (60% HNO3), at plant/RER	Agri
	0.64 kg silver		Silver {GLO} market for	Ecolnvent 3
		0.07 kg water	Water - Airborne emission	
		0.06 kg Nitrogen monoxide	Nitrogen oxide - Airborne emission	
	1 kg sodium borohydride		-	
	2.74 kg trimethyl borate		Trimethyl borate {GLO} market for	EcoInvent :
	2.54 kg sodium hydride		Not in SimaPro	
Nanosilver synthesis	0.958 kg Na + 0.042 kg H2 = 1 kg NaH		[Sodium {GLO} market for][Hydrogen (cracker) E]	EcoInvent 3, Industry Data 2.0
	13,915 kg Water	De-ionised water, reverse osmosis, production mix, at plant, from surface water RER System		Agri Footprint
	0.024 m 3 Water for cooling		Water, cooling, unspecified natural origin/m 3 - Raw material	
		0.009 kg hydrogen	Hydrogen - Airborne emission	
	0.13 kg diborane		Not in SimaPro - Created as Airborne emission	
		0.79 kg sodium nitrate	Sodium nitrite -Waterborne emission	
	64.35 g of plastic/container		Polyethylene, high density, granulate {RER} production	EcoInvent :
Ag containers production	64.35 μg of Ag / Container A		Not in SimaPro	
	765.77 µg of Ag / Container B		Not in SimaPro	
	820 cm ³ of food/container		-	
Usage phase		1.27 µg of Ag / Container A	Silver -Waterborne emission	
		15.16 μg of Ag / Container B	Silver -Waterborne emission	
	0.2 gallons of water/cycle*container	, , , , , , , , , , , , , , , , , , ,	Drinking water, water purification treatment, production mix, at plant, from surface water RER S	ELCD
	0.0625 kWh/cycle*container		Electricity, at grid, US, 2010/kWh/RNA	US LCI
Washing of containers	1.2 g of detergent/cycle*container		Soap {Row} production	Ecolnyent
S •• ••••••	1.2 g of detergent cycle container	0.2 gallons of water/cycle*container	Emission to water>water	
		0.47 μg of Ag / Container A	Waterborne emission	
		5.64 μg of Ag / Container B	Waterborne emission	
		41.04 μg of Ag / Container A	Inert Waste, for final disposal {RoW} treatment of inert waste, inert material landfill	Ecolnyent
End of life		488.35 μg of Ag / Container B	Inert Waste, for final disposal {RoW} treatment of inert waste, inert material landfill	Ecolnvent
		64.35 g of plastic/container	waste polyetnylene {Row} treatment of waste polyetnylene,	Ecolnvent

5 Table S2: Environmental impact contributions for the three scenarios during raw materials and manufacturing

6 phase.

Impact category	Unit	No-Ag	Low Ag	High Ag	% No-Ag	%Low Ag	%High Ag
Ozone depletion	kg CFC-11 eq	8.05E-11	8.62E-11	0.000	25.61%	27.40%	46.99%
Global warming	kg CO2 eq	0.124	0.124	0.125	33.29%	33.30%	33.40%
Smog	kg O3 eq	0.005	0.005	0.005	33.19%	33.23%	33.58%
Acidification	kg SO2 eq	4.14E-04	4.14E-04	0.000	33.23%	33.25%	33.52%
Eutrophication	kg N eq	2.96E-05	3.04E-05	0.0000	29.77%	30.60%	39.64%
Carcinogenics	CTUh	3.99E-09	4.00E-09	4.08E-09	33.08%	33.14%	33.78%
Non carcinogenics	CTUh	1.98E-09	2.16E-09	4.15E-09	23.89%	26.08%	50.03%
Respiratory effects	kg PM2.5 eq	3.26E-05	3.27E-05	3.33E-05	33.10%	33.15%	33.75%
Ecotoxicity	CTUe	0.228	2.33E-01	2.78E-01	30.89%	31.46%	37.65%
Fossil fuel depletion	MJ surplus	0.657	6.57E-01	6.57E-01	33.33%	33.33%	33.35%




Figure S1: Environmental impact contributions for the three scenarios during raw materials and manufacturing phase.

- 5 Table S3: Non-carcinogenic environmental impact contributions of nanosilver and polymer for three scenarios
- 6 during raw materials and manufacturing phase.

4

10

	No-Ag	Low Ag	High Ag
Plastic	1.98E-09	1.98E-09	1.98E-09
Nanosilver	0.00E+00	1.82E-10	2.17E-09

- 2 Figure S2: Non-carcinogenic environmental impact contributions of nanosilver and polymer for three scenarios
- 3 during raw materials and manufacturing phase.
- 4 Table S4: Environmental impact contributions during washing phase of no-Ag container.

_	
`	
J	

Impact category	Unit	Soap	Water	Electricity	% Soap	%Water	% Electricity
Ozone depletion	kg CFC-11 eq	9.05E-09	5.43E-10	3.47E-11	94.00%	5.64%	0.36%
Global warming	kg CO2 eq	1.93E-01	2.47E-02	2.15E+00	8.14%	1.04%	90.82%
Smog	kg O3 eq	5.12E-03	8.13E-04	1.23E-01	3.96%	0.63%	95.41%
Acidification	kg SO2 eq	5.13E-04	6.61E-05	1.85E-02	2.69%	0.35%	96.97%
Eutrophication	kg N eq	6.33E-04	2.85E-05	2.50E-04	69.41%	3.13%	27.47%
Carcinogenics	CTUh	4.36E-09	1.22E-10	4.36E-09	49.28%	1.38%	49.34%
Non carcinogenics	CTUh	2.72E-08	1.83E-10	7.31E-08	27.06%	0.18%	72.76%
Respiratory effects	kg PM2.5 eq	1.64E-04	2.23E-05	9.30E-04	14.68%	2.00%	83.32%
Ecotoxicity	CTUe	8.33E-01	2.98E-03	1.06E+00	43.91%	0.16%	55.93%
Fossil fuel depletion	MJ surplus	5.24E-02	1.16E-02	1.87E+00	2.72%	0.60%	96.68%

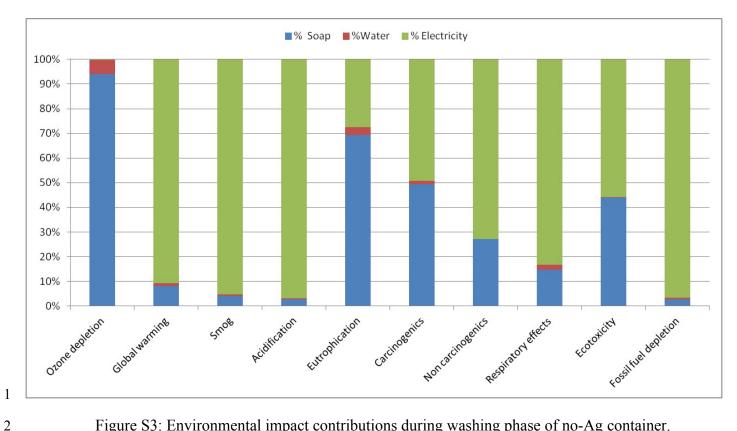
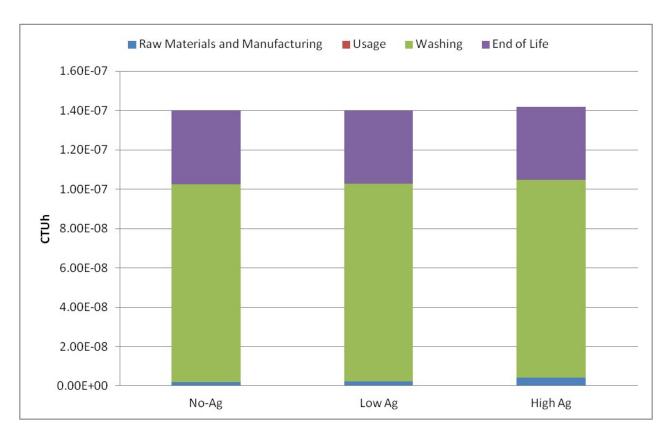



Figure S3: Environmental impact contributions during washing phase of no-Ag container.

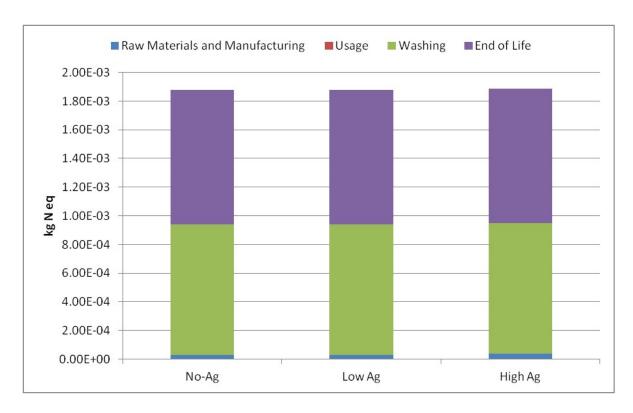
Table S5: Non-carcinogenic environmental impact contributions of the three scenarios during all phases.

Phase	No-Ag	Low Ag	High Ag
Raw Materials and Manufacturing	1.98E-09	2.16E-09	4.15E-09
Usage	0.00E+00	4.52E-13	5.38E-12
Washing	1.01E-07	1.01E-07	1.01E-07
End of Life	3.73E-08	3.73E-08	3.73E-08

2 Figure S4: Non-carcinogenic environmental impact contributions of the three scenarios during all phases.

4 Table S6: Eutrophication environmental impact contributions of the three scenarios during all phases.

Phase	No-Ag	Low Ag	High Ag
Raw Materials and Manufacturing	2.96E-05	3.04E-05	3.94E-05
Usage	0.00E+00	0.00E+00	0.00E+00
Washing	9.12E-04	9.12E-04	9.12E-04
End of Life	9.38E-04	9.38E-04	9.38E-04



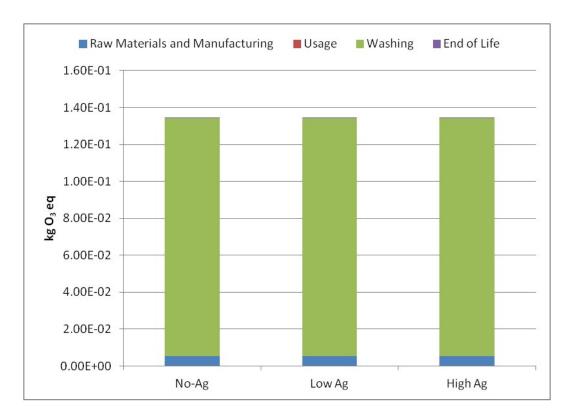
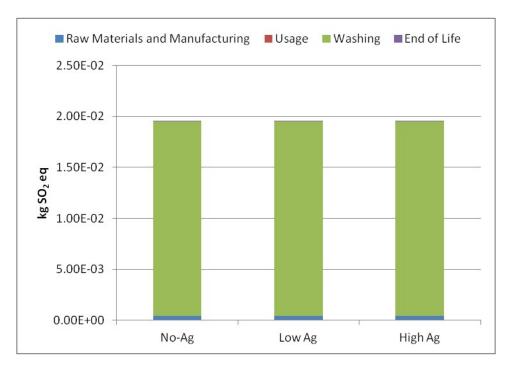

Figure S5: Eutrophication environmental impact contributions of the three scenarios during all phases.

Table S7: Smog environmental impact contributions of the three scenarios during all phases.

Phase	No-Ag	Low Ag	High Ag
Raw Materials and Manufacturing	5.18E-03	5.19E-03	5.24E-03
Usage	0.00E+00	0.00E+00	0.00E+00
Washing	1.29E-01	1.29E-01	1.29E-01
End of Life	1.24E-04	1.24E-04	1.24E-04

56


8

2 Figure S6: Smog environmental impact contributions of the three scenarios during all phases.

3 Table S8: Acidification environmental impact contributions of the three scenarios during all phases.

Phase	No-Ag	Low Ag	High Ag
Raw Materials and Manufacturing	4.14E-04	4.14E-04	4.18E-04
Usage	0.00E+00	0.00E+00	0.00E+00
Washing	1.91E-02	1.91E-02	1.91E-02
End of Life	5 50E-06	5 50E-06	5 50E-06

2 Figure S7: Acidification environmental impact contributions of the three scenarios during all phases.

4 Table S9: Carcinogenics environmental impact contributions of the three scenarios during all phases. 5

Phase	No-Ag	Low Ag	High Ag
Raw Materials and Manufacturing	3.99E-09	4.00E-09	4.08E-09
Usage	0.00E+00	0.00E+00	0.00E+00
Washing	8.84E-09	8.84E-09	8.84E-09
End of Life	1.25E-10	1.25E-10	1.25E-10

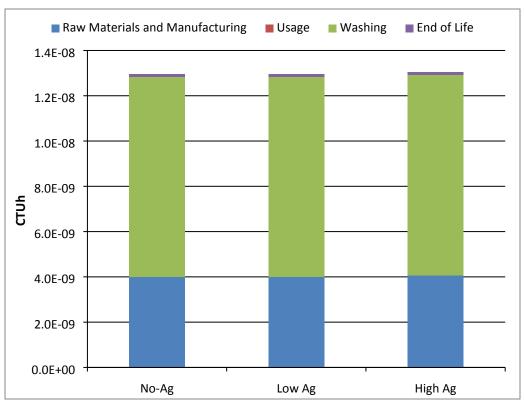


Figure S8: Carcinogenics environmental impact contributions of the three scenarios during all phases.

Table S10: Respiratory effects environmental impact contributions of the three scenarios during all phases

Phase	No-Ag	Low Ag	High Ag
Raw Materials and Manufacturing	3.26E-05	3.27E-05	3.33E-05
Usage	0.00E+00	0.00E+00	0.00E+00
Washing	1.12E-03	1.12E-03	1.12E-03
End of Life	9.37E-07	9.37E-07	9.37E-07

56

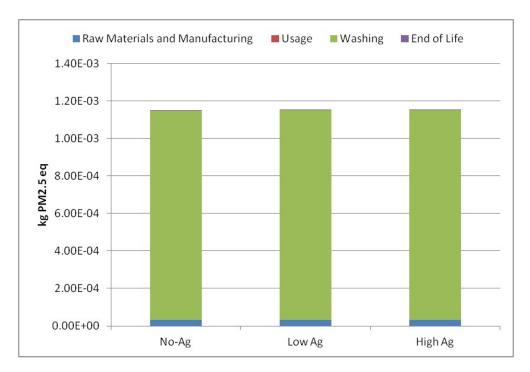
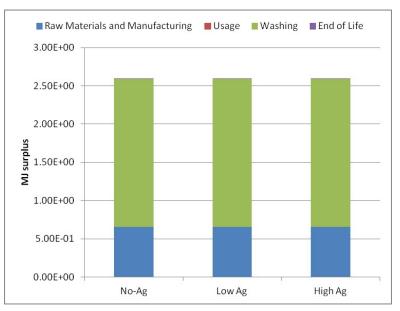



Figure S9: Respiratory effects environmental impact contributions of the three scenarios during all phases

Table S11: Fossil fuel depletion environmental impact contributions of the three scenarios during all phases

Phase	No-Ag	Low Ag	High Ag
Raw Materials and Manufacturing	6.57E-01	6.57E-01	6.57E-01
Usage	0.00E+00	0.00E+00	0.00E+00
Washing	1.93E+00	1.93E+00	1.93E+00
End of Life	2.28E-03	2.28E-03	2.28E-03

2 Figure S10: Fossil fuel depletion environmental impact contributions of the three scenarios during all phases

Table S12: Environmental impact contributions during washing phase of low-Ag container.

Impact category	Unit	Nanosilver	Soap	Water	Electricity	% Nanosilver	% Soap	%Water	% Electricity
Ozone depletion	kg CFC-11 eq	0.0E+00	9.0E-09	5.4E-10	3.5E-11	0.00%	94.00%	5.64%	0.36%
Global warming	kg CO2 eq	0.0E+00	1.9E-01	2.5E-02	2.2E+00	0.00%	8.14%	1.04%	90.82%
Smog	kg O3 eq	0.0E+00	5.1E-03	8.1E-04	1.2E-01	0.00%	3.96%	0.63%	95.41%
Acidification	kg SO2 eq	0.0E+00	5.1E-04	6.6E-05	1.9E-02	0.00%	2.69%	0.35%	96.97%
Eutrophication	kg N eq	0.0E+00	6.3E-04	2.9E-05	2.5E-04	0.00%	69.41%	3.13%	27.47%
Carcinogenics	CTUh	0.0E+00	4.4E-09	1.2E-10	4.4E-09	0.00%	49.28%	1.38%	49.34%
Non carcinogenics	CTUh	1.7E-13	2.7E-08	1.8E-10	7.3E-08	0.00%	27.06%	0.18%	72.76%
Respiratory effects	kg PM2.5 eq	0.0E+00	1.6E-04	2.2E-05	9.3E-04	0.00%	14.68%	2.00%	83.32%
Ecotoxicity	CTUe	9.1E-05	8.3E-01	3.0E-03	1.1E+00	0.00%	43.91%	0.16%	55.93%
Fossil fuel depletion	MJ surplus	0.0E+00	5.2E-02	1.2E-02	1.9E+00	0.00%	2.72%	0.60%	96.68%

6 Table S13: Environmental impact contributions during washing phase of high-Ag container.

Impact category	Unit	Nanosilver	Soap	Water	Electricity	% Nanosilver	% Soap	%Water	% Electricity
Ozone depletion	kg CFC-11 eq	0.0E+00	9.0E-09	5.4E-10	3.5E-11	0.00%	94.00%	5.64%	0.36%
Global warming	kg CO2 eq	0.0E+00	1.9E-01	2.5E-02	2.2E+00	0.00%	8.14%	1.04%	90.82%
Smog	kg O3 eq	0.0E+00	5.1E-03	8.1E-04	1.2E-01	0.00%	3.96%	0.63%	95.41%
Acidification	kg SO2 eq	0.0E+00	5.1E-04	6.6E-05	1.9E-02	0.00%	2.69%	0.35%	96.97%
Eutrophication	kg N eq	0.0E+00	6.3E-04	2.9E-05	2.5E-04	0.00%	69.41%	3.13%	27.47%
Carcinogenics	CTUh	0.0E+00	4.4E-09	1.2E-10	4.4E-09	0.00%	49.28%	1.38%	49.34%
Non carcinogenics	CTUh	2.0E-12	2.7E-08	1.8E-10	7.3E-08	0.00%	27.05%	0.18%	72.76%
Respiratory effects	kg PM2.5 eq	0.0E+00	1.6E-04	2.2E-05	9.3E-04	0.00%	14.68%	2.00%	83.32%
Ecotoxicity	CTUe	1.1E-03	8.3E-01	3.0E-03	1.1E+00	0.06%	43.88%	0.16%	55.90%
Fossil fuel depletion	MJ surplus	0.0E+00	5.2E-02	1.2E-02	1.9E+00	0.00%	2.72%	0.60%	96.68%

2 Table S14: Sensitivity analysis for the conventional container scenario. Reduction of 25% of the parameters.

-25%							
Impact category	nAg	Plastic	Water	Electricity	Detergent		
Ozone depletion	-	-0.2%	-1.4%	-0.1%	-22.8%		
Global warming	-	-1.2%	-0.2%	-21.5%	-1.9%		
Smog	-	-1.0%	-0.2%	-22.9%	-1.0%		
Acidification	-	-0.5%	-0.1%	-23.7%	-0.7%		
Eutrophication	-	-0.4%	-0.4%	-3.3%	-8.4%		
Carcinogenics	-	-7.7%	-0.2%	-8.41%	-8.40%		
Non carcinogenics	-	-0.4%	0.0%	-13.1%	-4.9%		
Respiratory effects	-	-0.7%	-0.5%	-20.2%	-3.6%		
Ecotoxicity	-	-0.7%	0.0%	-3.4%	-2.7%		
Fossil fuel depletion	-	-6.3%	-0.1%	-18.0%	-0.5%		

3

4

5 Table S15: Sensitivity analysis for the low-nAg content container scenario. Reduction of 25% of the

6 parameters.

Impact category	nAg	Plastic	Water	Electricity	Detergent
Ozone depletion	-0.0142%	-0.2%	-1.4%	-0.1%	-22.7%
Global warming	-0.0003%	-1.2%	-0.2%	-21.5%	-1.9%
Smog	-0.0009%	-1.0%	-0.2%	-22.9%	-1.0%
Acidification	-0.0004%	-0.5%	-0.1%	-23.7%	-0.7%
Eutrophication	-0.0110%	-0.4%	-0.4%	-3.3%	-8.4%
Carcinogenics	-0.0137%	-7.7%	-0.2%	-8.4%	-8.4%
Non carcinogenics	-0.0325%	-0.4%	0.0%	-13.1%	-4.9%
Respiratory effects	-0.0012%	-0.7%	-0.5%	-20.2%	-3.6%
Ecotoxicity	-0.0136%	-0.7%	0.0%	-3.4%	-2.7%
Fossil fuel depletion	-0.0003%	-6.3%	-0.1%	-18.0%	-0.5%

, R

9 10

11

12

1 Table S16: Sensitivity analysis for the high-nAg content container scenario. Reduction of 25% of the

2 parameters.

Impact category	nAg	Plastic	Water	Electricity	Detergent
Ozone depletion	-0.168%	-0.2%	-1.4%	-0.1%	-22.6%
Global warming	-0.004%	-1.2%	-0.2%	-21.5%	-1.9%
Smog	-0.011%	-1.0%	-0.2%	-22.9%	-1.0%
Acidification	-0.005%	-0.5%	-0.1%	-23.7%	-0.7%
Eutrophication	-0.130%	-0.4%	-0.4%	-3.3%	-8.4%
Carcinogenics	-0.162%	-7.7%	-0.2%	-8.4%	-8.3%
Non carcinogenics	-0.382%	-0.3%	0.0%	-12.9%	-4.8%
Respiratory effects	-0.014%	-0.7%	-0.5%	-20.2%	-3.6%
Ecotoxicity	-0.161%	-0.7%	0.0%	-3.4%	-2.7%
Fossil fuel depletion	-0.004%	-6.3%	-0.1%	-18.0%	-0.5%

4 5

11121314151617

3

6 The Ag losses were calculated utilizing data from experimental studies, as detailed in the

article. Equations 1 and 2 were utilized independently to calculate the Ag losses from the initial

Ag concentration as a function of losses due to washing and food storage. The remaining Ag in

14

the container at the end of its life, was calculated by subtracting the Ag losses from the initial

Ag content of the container.