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SI1. Characterization of water from river Rhône

Chromatographic analysis was performed to define the water ion composition using a 

Dionex ICS-3000 analyzer. Samples were run through an IoMNPac CS12 column to elude the 

cations with an isocratic concentration of methane sulfonic acid and water, meanwhile to elude 

the anions with KOH, the same samples were run through an IoMNPac AS19 column. A 

certified water reference material Ontario-99 from the National Water Research Institute 

(Canada) was used to verify the accuracy of the measurements. All the reference material results 

were within the acceptance range of the certificate.

Table S1 Physicochemical parameters of water from river Rhône (08.05.2017)

Parameters Value

pH 7.9 ± 0.1

Conductivity, µSm/cm 302 ± 1

Oxygen, mg/L 10.4 ± 0.2

Alkalinity, mg/L of CaCO3 88 ± 1

Temperature, °C 9.4 ± 0.2

Dissolved organic carbon, mg C/L 0.72 ± 0.1

Table S2 Major ion composition of water from river Rhône obtain using ionic 

chromatography

Name of element Unit Value SD

Sodium Na+ mg/L 6.73 0.13

Potassium K+ mg/L 1.6 0.05

Magnesium Mg2+ mg/L 5.68 0.39

Calcium Ca2+ mg/L 42.33 0.32

Fluoride, F– mg/L 0.077 0.001

Chloride, Cl– mg/L 9.83 0.01

Bromide, Br– mg/L 0.0323 0.0003

Sulfate SO4
2– mg/L 44.71 0.06

Nitrate, NO3
2– mg/L 2.23 0.05
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SI2. Kinetic of aggregation between PS nanoplastics and Fe2O3 in ultrapure water
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Fig. S1. Variation of z-average hydrodynamic diameter of PS nanoplastics with time at 
increasing nanoplastic concentration. Experimental conditions: [Fe2O3] = 5 mg/L, pH = 8.0 ± 
0.2, ultrapure water.
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SI3. Size distribution (DLS) of PS nanoplastic particles and Fe2O3 particles
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Fig. S2. Size distribution of PS nanoplastics (A) and Fe2O3 IC (B) particles individually 

dispersed in ultrapure water at pH 8.0 ± 0.2. Experimental conditions: [PS] = 10 mg/L, [Fe2O3] 

= 5 mg/L. The mode of the range of particle diameter is equal to 68.06 nm for PS and 91.28 nm 

for Fe2O3.
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Fig. S3. Size distribution of a mixture of PS nanoplastics and Fe2O3 particles in ultrapure water 

at increasing nanoplastic concentration at pH 8.0 ± 0.2. Experimental conditions: [Fe2O3] = 5 

mg/L in all samples, (A) [PS] = 1 mg/L, corresponding to the beginning of heteroaggregation, 

the mode of the range of particle diameter is equal to 190.1 nm.; (B) [PS] = 3 mg/L, 

corresponding to the peak of heteroaggregation, there are three peaks with the modes equal to 

141.8 nm, 255 nm and 1106 nm; (C) [PS] = 40 mg/L, corresponding to the excess of the 

nanoplastic particles and limited heteroaggregation with two peaks with mode equal to 43.82 

nm and 220 nm. 
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Fig. S4. Size distribution of PS nanoplastics in Rhône water in excess of nanoplastics. 

Experimental conditions: [PS] = 40 mg/L. (A) Intensity weighted distribution (%) with two 

peaks equal to 50.75 nm and [295.3; 342] nm corresponding to the individual PS particles and 

heteroaggregates; (B) Number weighted distribution (kcps) with one peak representing 

nanoplastics with mode equals 32.67 nm.
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SI4. Aggregation kinetic of PS nanoplastics in river Rhône water
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Fig. S5. Variation of z-average hydrodynamic diameter of PS nanoplastics with time at 

increasing nanoplastic concentration in Rhône water. The straight lines indicate linear fit in 

order to obtain the aggregation rate. Experimental conditions: Rhône water, pH = 8.0 ± 0.2.

Table S3 Parameters for models from Fig.6

Linear model Exponential decay model


