Supporting information (SI)

for the article:

Heteroaggregation of nanoplastic particles in the presence of inorganic colloids and natural organic matter

Olena Oriekhova, Serge Stoll*

University of Geneva, Institute of Environmental Science, Department F.-A. Forel for environmental and aquatic sciences, Group of Environmental Physical Chemistry Uni Carl Vogt, 66, boulevard Carl-Vogt, CH-1211 Geneva 4, Switzerland; Olena.Oriekhova@unige.ch, Tel: +41 22 379 0332. * Corresponding author: Serge Stoll, Tel: +41 22 379 0333, Serge.Stoll@unige.ch

SI1. Characterization of water from river Rhône

Chromatographic analysis was performed to define the water ion composition using a Dionex ICS-3000 analyzer. Samples were run through an IoMNPac CS12 column to elude the cations with an isocratic concentration of methane sulfonic acid and water, meanwhile to elude the anions with KOH, the same samples were run through an IoMNPac AS19 column. A certified water reference material Ontario-99 from the National Water Research Institute (Canada) was used to verify the accuracy of the measurements. All the reference material results were within the acceptance range of the certificate.

Table S1 Physicochemical parameters of water from river Rhône (08.05.2017)

Parameters	Value
pH	7.9 ± 0.1
Conductivity, µSm/cm	302 ± 1
Oxygen, mg/L	10.4 ± 0.2
Alkalinity, mg/L of CaCO ₃	88 ± 1
Temperature, °C	9.4 ± 0.2
Dissolved organic carbon, mg C/L	0.72 ± 0.1

 Table S2 Major ion composition of water from river Rhône obtain using ionic

 chromatography

Name of element	Unit	Value	SD
Sodium Na ⁺	mg/L	6.73	0.13
Potassium K ⁺	mg/L	1.6	0.05
Magnesium Mg ²⁺	mg/L	5.68	0.39
Calcium Ca ²⁺	mg/L	42.33	0.32
Fluoride, F-	mg/L	0.077	0.001
Chloride, Cl-	mg/L	9.83	0.01
Bromide, Br-	mg/L	0.0323	0.0003
Sulfate SO ₄ ^{2–}	mg/L	44.71	0.06
Nitrate, NO ₃ ^{2–}	mg/L	2.23	0.05

SI2. Kinetic of aggregation between PS nanoplastics and Fe₂O₃ in ultrapure water

Fig. S1. Variation of z-average hydrodynamic diameter of PS nanoplastics with time at increasing nanoplastic concentration. Experimental conditions: $[Fe_2O_3] = 5 \text{ mg/L}$, $pH = 8.0 \pm 0.2$, ultrapure water.

Fig. S2. Size distribution of PS nanoplastics (A) and Fe_2O_3 IC (B) particles individually dispersed in ultrapure water at pH 8.0 ± 0.2. Experimental conditions: [PS] = 10 mg/L, [Fe₂O₃] = 5 mg/L. The mode of the range of particle diameter is equal to 68.06 nm for PS and 91.28 nm for Fe_2O_3 .

Fig. S3. Size distribution of a mixture of PS nanoplastics and Fe₂O₃ particles in ultrapure water at increasing nanoplastic concentration at pH 8.0 \pm 0.2. Experimental conditions: [Fe₂O₃] = 5 mg/L in all samples, (A) [PS] = 1 mg/L, corresponding to the beginning of heteroaggregation, the mode of the range of particle diameter is equal to 190.1 nm.; (B) [PS] = 3 mg/L, corresponding to the peak of heteroaggregation, there are three peaks with the modes equal to 141.8 nm, 255 nm and 1106 nm; (C) [PS] = 40 mg/L, corresponding to the excess of the nanoplastic particles and limited heteroaggregation with two peaks with mode equal to 43.82 nm and 220 nm.

Fig. S4. Size distribution of PS nanoplastics in Rhône water in excess of nanoplastics. Experimental conditions: [PS] = 40 mg/L. (A) Intensity weighted distribution (%) with two peaks equal to 50.75 nm and [295.3; 342] nm corresponding to the individual PS particles and heteroaggregates; (B) Number weighted distribution (kcps) with one peak representing nanoplastics with mode equals 32.67 nm.

Fig. S5. Variation of z-average hydrodynamic diameter of PS nanoplastics with time at increasing nanoplastic concentration in Rhône water. The straight lines indicate linear fit in order to obtain the aggregation rate. Experimental conditions: Rhône water, $pH = 8.0 \pm 0.2$.

Linear model			Exponential decay model				
Equation	$y = a + b^*x$			Model	ExpDec1		
Weight	Instrumental			Equation	$y = A1 \exp(-x/t1)$		
Residual Sum of Squares	5.53734			Reduced Chi-S) + y0 7.70862		
Pearson's r				qr	0.00502		
Adj. R-Square	0.95451	1997		Adj. R-Square	0.90523	Value	Standard Error
		Value	Standard Error	D		1 0COC	
P	Intercept	-13 16495	4 26159	٢	yu	1.0626	0.01//1
- P	Class	00.50000	0.00004	P	A1	190.60341	42.23136
Р	Siope	26.56889 2.88304	2.88304	P	t1	6.6445	0.95902

Table S3 Parameters for r	models from	F1g.6
----------------------------------	-------------	-------

8