Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2018

1 Supplementary information

2 Distinct effects of soluble and bound exopolymeric substances on algal

- **3 bioaccumulation and toxicity of anatase and rutile TiO₂ nanoparticles**
- 4 Xuan Gao^{a,#}, Kaijun Zhou^{a,#}, Luqing Zhang^a, Kun Yang^{a,b}, Daohui Lin^{a,b,*}
- 5 ^aDepartment of Environmental Science, Zhejiang University, Hangzhou 310058, China
- 6 bZhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University,
- 7 Hangzhou 310058, China
- 8 *Corresponding author: Tel.: +86 571 88982582; fax: +86 571 88982590.
- 9 E-mail address: <u>lindaohui@zju.edu.cn</u> (D. Lin)
- ¹⁰ [#]The two authors contributed equally to this paper.

TiO2- NPs	Purity (%)	Surface area (m²/g)	Size (nm)	Zeta potential (mV)	Hydrodynamic size (nm)	Crystal structure
A-HR3	98.0	324	12.0±3.5	-2.20±1.26	526±100	anatase
R-DJ3	89.5	167	47.6±7.6	-34.2±1.45	283±3.15	rutile

11 Table S1. Selected physicochemical properties of A-HR3 and R-DJ3.

12

13

14 Table S2. The difference (ΔP) between co- and additive settling curves of TiO₂-NPs and algae

15 with or without B-EPS.

	A-HR3&cell	A-HR3&cell	R-DJ3&cell	R-DJ3&cell
	with B-EPS	without B-EPS	with B-EPS	without B-EPS
ΔP	0.219	0.122	-0.178	-0.207

16

Fig. S1 Transmission electron microscope images of A-HR3 (A) and R-DJ3 (B). (Adapted
from our previous paper "Ma, S., Zhou, K.J., Yang, K. and Lin, D.H., ENVIRON SCI
TECHNOL, 2015, 49, 932-939")

27

28

Fig. S2 X-ray energy dispersion spectroscope (EDS) analyses of A-HR3 (A) and R-DJ3 (B).
(Adapted from our previous paper "Ma, S., Zhou, K.J., Yang, K. and Lin, D.H., ENVIRON
SCI TECHNOL, 2015, 49, 932-939")

Fig. S3 X-ray diffraction patterns of A-HR3 and R-DJ3. (Adapted from our previous paper
"Ma, S., Zhou, K.J., Yang, K. and Lin, D.H., ENVIRON SCI TECHNOL, 2015, 49, 932-939")

43 Fig. S4 TEM images of A-HR3 (A and B) and R-DJ3 (C and D) in the OECD medium with 25

44 mg C/L B-EPS (A and C) and S-EPS (B and D).

Fig. S5 Fluorescence electron microscope images of the algal cells with or without B-EPS, with
the live cells dyed by the green-fluorescent nucleic acid stain (SYTO 9) and the dead cells
dyed by the red-fluorescent nucleic acid stain (propidium iodide, PI). (Adapted from our
previous paper "Zhou, K.J, Hu, Y., Zhang, L.Q., Yang, K. and Lin, D.H., SCI REP-UK, 2016,
6")

41

42

50

51 Fig. S6 Growth curves of algae with and without B-EPS. (Adapted from our previous paper

52 "Zhou, K.J, Hu, Y., Zhang, L.Q., Yang, K. and Lin, D.H., SCI REP-UK, 2016, 6")