Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Inorganic Ba-Sn Nanocomposite Materials for Sulfate Sequestration from Complex Aqueous Solutions

Isaac E. Johnson, [†] Sayandev Chatterjee, [†] Gabriel B. Hall, [†] Sarah D. Burton, [‡] Emily L. Campbell, [†] Michele A. Conroy, [†] Yingge Du, [‡] Meghan S. Fujimoto, [†] Tamas Varga, [‡] Albert A. Kruger, [§] Tatiana G. Levitskaia^{*†}

Organizations

[†]Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA. E-mail: Tatiana.Levitskaia@pnnl.gov

^{*}Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA

[§] U.S. Department of Energy, Office of River Protection, Richland, WA 99352, USA

Table S1. AN-102 Low Activity Waste (LAW) Simulant composition. Metal ion concentration was analyzed by ICP after precipitate was settled and filtered out.

Component	Target Molarity	ICP-OES Molarity ^a
	(moles/L)	(moles/L)
Na⁺	5.1	5.37±0.09
AI ³⁺	0.235	0.15±0.03
K+	0.13	0.14±0.01
CrO ₄ ²⁻	0.012	0.0118±0.0004
SO ₄ ²⁻	0.085	0.094±0.003
PO ₄ ³⁻	0.020	0.0205±0.0008
Cl-	0.064	
F⁻	0.047	
NO ₂ -	0.94	
NO ₃ -	1.11	
CO ₃ ²⁻	0.46	
HCO ₂ ⁻ (formate)	0.37	
$C_2O_4^{2-}$ (oxalate)	0.011	
$C_2H_3O_3^-$ (glycolate)	0.28	
$C_6H_5O_7^{3-}$ (citrate)	0.047	
OH	0.4	0.47±0.01 ^b

^a Standard deviation across sample measurements from six different batches of AN-102 simulant.

^b Determined by potentiometric titration

Figure S1. Thermogravimetric analysis and differential thermal analysis of the as synthesized **Ba-SnCl**₄ material.

Figure S2. Thermogravimetric analysis and differential thermal analysis of the as synthesized **Ba-SnCl**_{2/4} material.

Figure S3. Thermogravimetric analysis and differential thermal analysis of the as synthesized **Ba-SnCl**₂ material.

Figure S4. IR spectra of the synthesized **Ba-SnCl**₄ material before and after being exposed to the AN-102 simulant or 0.5 M NaOH/1.11 M NaNO₃ solutions containing 85 mM of Na₂SO₄ or Na₂CrO₄.

Figure S5. IR spectra of the synthesized **Ba-SnCl**_{2/4} material before and after being exposed to the AN-102 simulant or 0.5 M NaOH/1.11 M NaNO₃ solutions containing 85 mM of Na₂SO₄ or Na₂CrO₄.

Figure S6. IR spectra of the synthesized **Ba-SnCl**₂ material before and after being exposed to the AN-102 simulant or 0.5 M NaOH/1.11 M NaNO₃ solutions containing 85 mM of Na₂SO₄ or Na₂CrO₄.

Figure S7. Raman spectrum of AN-102 simulant.

Figure S8. Kinetics of SO_4^{2-} (black symbols) and CrO_4^{2-} (orange symbols) removal by **Ba-SnO** material from the AN-102 simulant: semi-logarithmic plots of the molar concentration in the contact solutions vs time.

Figure S9. X-ray diffractograms of reference compounds and **Ba-SnCl₂, Ba-SnCl_{2/4}** materials exposed to the AN-102 simulant or 0.5 M NaOH/1.11 M NaNO₃ solutions containing 85 mM of Na₂SO₄ or Na₂CrO₄.

Figure S10. Thermogravimetric analysis and differential thermal analysis of the **Ba-SnCl**₄ material after treatment with AN-102 simulant.

Figure S11. Thermogravimetric analysis and differential thermal analysis of the **Ba-SnCl**_{2/4} material after treatment with AN-102 simulant.

Figure S12. Thermogravimetric analysis and differential thermal analysis of the **Ba-SnCl**₂ material after treatment with AN-102 simulant.