Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2017

Supplementary material

for

Disintegration of aerobic granules during prolonged operation

Shasha Yuan ^a, Mingming Gao ^a, Fanping Zhu ^a, Muhammad Zaheer Afzal ^a, Yun-Kun Wang ^a,

Hai Xu^b, Mingyu Wang^b, Shu-Guang Wang^a, Xin-Hua Wang^{a,*}

^a Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of

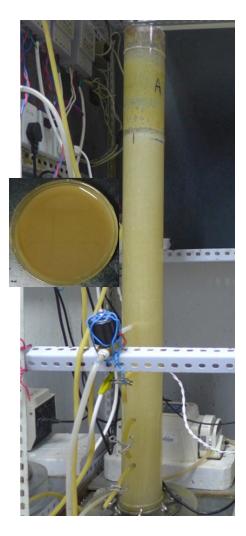
Environmental Science and Engineering, Shandong University, Jinan 250100, China

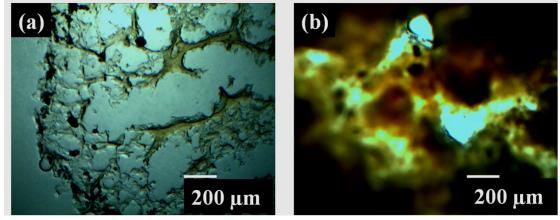
^b State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University,

Jinan 250100, China

*Corresponding author. School of Environmental Science and Engineering, Shandong University, Jinan 250100, China. Tel.: +86 531 88362220; Fax: +86 531 88364513.

E-mail address: xinhuawang@sdu.edu.cn_(X.H. Wang).




Fig. S1 Sequencing batch reactor and seed sludge.

 $\textbf{Table S1} \text{ Basic element and trace element of synthetic was$ $tewater}$

Basic element	Concentration (mg/L)	Trace element	Concentration (mg/L)
C ₆ H ₁₂ O ₆	468.7	$MnCl_2 \cdot 4H_2O$	0.12
CH ₃ COONa	640.6	H ₃ BO ₃	0.15
NH ₄ Cl	382.1	$CuSO_4 \cdot 5H_2O$	0.03
$CaCl_2$	166.5	KI	0.03
KH ₂ PO ₄	22.1	ZnCl ₂	0.12
$MgSO_4 \cdot 7H_2O$	25.3	$CoCl_2 \cdot 6H_2O$	0.06
FeSO ₄ ·7H ₂ O	20.3	$Na_2MoO_4 \cdot 2H_2O$	0.15
EDTA	20.4		
FeCl ₃ ·6H ₂ O	1.5		

Table S2 Stains used in staining operation

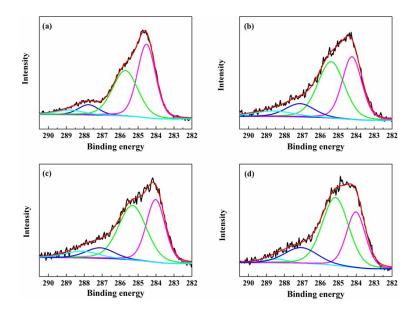

Dyes	Excitation (nm)	Emission (nm)	Targets	Staining time (h)
SYTO 9	488	530	Live cells	1
Propidium iodide	488	630	Dead cells	1
SYPRO orange	488	570	proteins	4
Con A with Alexa Flour 633 conjugates	633	647	Polysaccharides (α-Mannose, α-Glucose)	4

Fig. S2 Graphs of (a) edge section (thickness of 50 μ m) and (b) inner core section (thickness of 200 μ m) of intact aged granules (IG_A).

Table S3 Percentage of Ca precipitation in different part of intact young granules (IG_Y) and intact aged granules (IG_A) (Part 1: outer zones of cross-section in intact granules; Part 2: middle zones of cross-section in intact granules; Part 3: core of cross-section in intact granules)

Ca (%)	Part 1	Part 2	Part 3
IG _Y	1.09 ± 0.43	6.92 ± 0.56	13.72 ± 2.29
IG _A	6.92 ± 0.56	9.05 ± 0.32	4.19 ± 0.90

Fig. S3 High-resolution C 1s XPS spectra of EPS from (a) intact young granules (IG_Y), (b) intact aged granules (IG_A), (c) crannied granules (CG) and (d) broken granules (BG).

Table S4 Microbial community diversity and richness of intact young granules (IG _Y), intact aged
granules (IG _A), crannied granules (CG) and broken granules (BG)

Samples	Level	OTUs	Chao index	Shannon index	Coverage
IG_Y	97%	1216	1171	6.68	99.91%
IG _A		1292	1035	5.44	99.83%
CG		1301	1132	5.85	99.94%
BG		1289	1129	5.75	99.93%

Chao index: Community richness. A higher number represented more richness. Shannon index: Community diversity. A higher number represented more diversity.

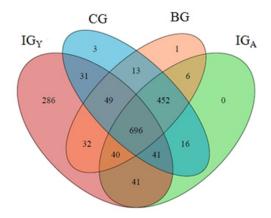
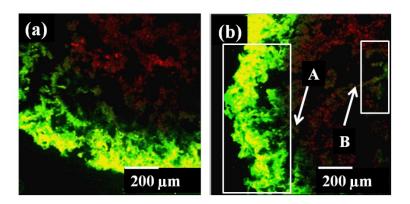



Fig. S4 Venn diagram of intact young granules (IG_Y), intact aged granules (IG_A), crannied granules (CG) and broken granules (BG).

Table S5 Shared OTUs percentage of intact young granules (IG_Y) , aged young granules (IG_A) , crannied granules (CG) and broken granules (BG).

samples	Shared OTUs percentage (%)	
All	13.66	
IG _Y , IG _A & CG	19.35	
IG _Y , IG _A & BG	19.38	
IG _Y , CG &BG	19.57	
IG _A , CG & BG	29.57	
IG _Y & IG _A	32.67	
IG _Y & CG	32.46	
IG _Y & BG	32.61	
IG _A & CG	46.47	
IG _A & BG	46.26	
CG & BG	46.72	

Fig. S5 CLSM image of live/dead cell spatial distribution over section of (a) intact aged granules (IG_A), (b) broken granules (BG) (A: outer side; B: broken surface) (Live cells were stained with green; dead cells were stained with red).