Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2017

Flat flexible thin milli-electrode array for real-time *in situ* water quality

monitoring in distribution systems

Zhiheng Xu¹, Wangchi Zhou¹, Qiuchen Dong², Yan Li¹, Dingyi Cai¹, Yu Lei^{2,3},

Amvrossios Bagtzoglou¹, Baikun Li^{1*}

¹ Department of Civil & Environmental Engineering, University of Connecticut, Storrs,

Connecticut 06269, United States

² Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States

³ Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States

(*corresponding author: baikun.li@uconn.edu; Phone: 860-486-2339)

Figure S1. Fabrication process of five types of MEA sensors on a Kapton film, including (a) Kapton substrate preparation, (b) printing the gold/ silver layer on the substrate, (c) wire bonding, (d) waterproof layer coating, (e) working electrode modification and (f) the final layout of pH, temperature, conductivity, Cl⁻ and ClO⁻ MEA sensors for real-time monitoring of water quality.

Figure S2. MEA calibration and shock experiment setup (Inserted picture: the demo of the MEA sensor film attached to a transparent PVC pipeline for lab tests).

Figure S3. Long-term stability of Cl⁻ and ClO⁻ MEAs within 4-week operational period, including (a) experiment setup. The resistance of a MEA with the working electrode modified by Ag nanoparticles immersed into tap water was continuously read using a multiple meter during 4-week period, (b) the variation of the resistance of MEA sensors over 4-week period (Insert pictures: microscale images of the silver working electrodes before and after immersion into tap water for 4 weeks, scale bar 100µm) and (c) microscale images of the working electrodes before the CV program was conducted and after 500 circles of the CV program.

a.

c.

Figure S4. Selectivity tests of MEA sensors using cyclic voltammetry (CV) curve. (a) the silver (Ag) working electrode of a chloride (Cl⁻) MEA in 32mM chloride (Cl⁻) solution, and (b) the silver (Ag) working electrode of a hypochlorite (ClO⁻) MEA in 32mM hypochlorite (ClO⁻) solution.

a.

Figure S5. (a) Potential readings of the Cl⁻ MEA changes over time and (b) open potential responses (mV) of the Cl⁻ MEA at different Cl⁻ concentrations (The dashed line shows the trend).

a.

Figure S6. (a) The linear regression model of the temperature MEA resistance (Ω) v.s. temperature (°C), (b) the response of temperature MEA to the temperature shock and (c) the linearity regression model of the conductivity MEA resistance (Ω) v.s. conductivity (μ s/cm).

a.

Figure S7. (a) Potential readings of the pH MEA in the pH=3-11 solutions change over time and (b) the linear regression model of the pH MEA potential (V) vs pH.

a.

