Peracetic acid disinfection kinetics for combined sewer overflows: indicator organisms, antibiotic resistance genes, and microbial community

AUTHOR NAMES Alessia Eramo, William Morales Medina, and N.L. Fahrenfeld*

AUTHOR ADDRESS Department of Civil and Environmental Engineering, Rutgers, The State University of New Jersey, 96 Frelinghuysen Rd., Piscataway, New Jersey 08854, United States

Correspondence: nfahrenf@rutgers.edu, (848) 445-8416

APPENDIX

Gene	Primer sequence	Ta (°C)	Amplicon length (bp)	Source
sul1	CGCACCGGAAACATCGCTGCAC TGAAGTTCCGCCGCAAGGCTCG	65	163	1
tet(G)	GCAGAGCAGGTCGCTGG CCYGCAAGAGAAGCCAGAAG	68	134	2
mexB	GTGTTCGGCTCGCAGTACTC AACCGTCGGGATTGACCTTG	60	244	3
BacHum	TGA GTT CAC ATG TCC GCA TGA CGT TAC CCC GCC TAC TAT CTA ATG /56-FAM/TCC GGT AGA CGA TGG GGA TGC GTT /36-TAMSp/	60	81	4
16S rRNA	CCTACGGGAGGCAGCAG ATTACCGCGGGCTGCTGG	65	202	5

Table S1. Primers, annealing temperatures, and amplicon lengths.

Table S2. Average water quality data (\pm standard deviation, n=3) for source wastewater from disinfection experiments (Experiments 1 and 2) and PAA degradation experiment (Experiment 3).

	Experiment 1	Experiment 2	Experiment 3			
	WWTPa	WWTPb	WWTPa		WWTPb	
Sampling date	10/26/2015	11/16/2016	7/14/2017		7/27/2017	
Percent WW	23%	40%	23%	11.50%	40%	20%
TSS (mg/L)*	228 ±109	63 ±31	-		280	
COD (mg/L)	-	79±8	75±18	39±13	158±34	117 ± 69
pН	-	7.7±0.01	6.88		6.59	

*TSS was measured in 100% WW samples

Fig. S1 Colony forming units (CFU) on LB agar from 40% WW treated with 0 mg/L or 5 mg/L PAA (n=2 or 3).

Fig. S2 Water quality parameters (a) conductivity, (b) chemical oxygen demand (COD), (c) pH and (d) total suspended solids (TSS) in 40% WW treated with 5 mg/L PAA compared to no PAA controls.

Fig. S3 Rarefaction curves for samples treated with 20mg/L PAA or no treatment controls for 0 or 60 min. Viable indicates samples treated with propidium monoazide prior to submission for sequencing. # indicates replicate number.

References

1. Pei, R.; Kim, S.-C.; Carlson, K. H.; Pruden, A., Effect of river landscape on the sediment concentrations of antibiotics and corresponding antibiotic resistance genes (ARG). *Water Res.* **2006**, *40*, (12), 2427-2435.

2. Aminov, R.; Garrigues-Jeanjean, N.; Mackie, R., Molecular ecology of tetracycline resistance: development and validation of primers for detection of tetracycline resistance genes encoding ribosomal protection proteins. *Appl. Environ. Microbiol.* **2001**, *67*, (1), 22-32.

3. Yoneda, K.; Chikumi, H.; Murata, T.; Gotoh, N.; Yamamoto, H.; Fujiwara, H.; Nishino, T.; Shimizu, E., Measurement of *Pseudomonas aeruginosa* multidrug efflux pumps by quantitative real-time polymerase chain reaction. *FEMS Microbiol Lett* **2005**, *243*, (1), 125-31.

4. Kildare, B. J.; Leutenegger, C. M.; McSwain, B. S.; Bambic, D. G.; Rajal, V. B.; Wuertz, S., 16S rRNA-based assays for quantitative detection of universal, human-, cow-, and dog-specific fecal *Bacteroidales*: A Bayesian approach. *Water Res.* **2007**, *41*, (16), 3701-3715.

5. Muyzer, G.; De Waal, E. C.; Uitterlinden, A. G., Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. *Appl. Environ. Microbiol.* **1993**, *59*, (3), 695-700.