Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2017

1	Supporting Information
2	
3	Metallic Ion Leaching from Heterogeneous Catalysts: An
4	Overlooked Effect in the Study of Catalytic Ozonation Processes
5	Submitted by
6	Wenwen Yang ^a , Bernhard Vogler ^b , Yu Lei ^{c, *} , Tingting Wu ^{a, *}
7	^a Department of Civil and Environmental Engineering, The University of Alabama in Huntsville,
8	^b Department of Chemistry, The University of Alabama in Huntsville
9	^c Department of Chemical and Materials Engineering, The University of Alabama in Huntsville AL,
10	35899, USA
11	
12	
13	* Corresponding author:
14	Email: <u>Tingting.Wu@uah.edu</u> ; Tel: +1-256-824-6423
15	Email: <u>Yu.Lei@uah.edu</u> ; Tel: +1-256-824-6527
16	
17	This PDF file includes:
18	Table S1
19	Figure S1 to S7
20	
21	
22	
23	
24	
25	

	Compound Wavelength		Mot	oile pha	se	Flow rate	Injection volume
		(nm)				(mL/min) (^µ L)
	Oxalic acid	268	20m	М	KH ₂ PO ₄ /CH ₃ OH	1	10
			(97:	3)			
	Nitrobenzene	254	DI/	DI/CH ₃ OH (50:50)		1	10
	pCBA	234	20	mM	H ₃ PO ₄ /CH ₃ OH	1	10
			(30:'	70)			
27							
28							
29							
30							
31							
32							
33							
34							
35							
36							
37							
38							
39							
40							
41							
42							

26	Table S1.	HPLC	conditions	for OA,	nitrobenzene,	pCBA mea	asurements

45 Figure S1. Number of research articles in the field of heterogeneous catalytic ozonation46 published from 2010 to 2016 according to Scopus (Elsevier).

-

S3

Figure S2. Mineralization of models compounds during catalytic ozonation: OA (A & B); and
Nitrobenzene (C & D). [Initial OA: 1 mM; initial nitrobenezene: 0.325 mM; working solution:
200 mL; catalyst dose: 1 g].

Figure S3. (A) Cu leaching in buffered nitrobenzene solutions at different pH [catalyst dose: 1 g
CuO/SiO₂; nitrobenzene concentration: 0.325 mM; working solution: 200 mL; stirring time: 30
min]; (B) TOC reduction at different pH and copper ion concentrations. [Initial nitrobenzene
concentration: 0.325 mM; working solution: 200 mL; reaction time: 30 min].

84 Figure S4. Effect of *p*CBA on the degradation of OA. [Initial OA: 1.0 mM; working solution:
85 200 mL; catalyst dose: 1 g; *p*CBA: 18 mg/L].

- 91 Figure S5. Comparison of TOC reduction with and without *p*CBA addition. [Initial OA: 1.0 mM;
- 92 working solution: 200 mL; catalyst dose: 1 g; reaction time: 30 min; initial *p*CBA concentration:
- 93 18 mg/L].

113 Figure S6. Effect of *p*CBA concentrations on the degradation of OA. [Initial OA: 1.0 mM; 114 working solution: 200 mL; catalyst dose: 1 g].

Figure S7. (A) Measured TOC vs. Calculated TOC based on OA concentration. [Initial OA: 1.0 mM; working solution: 200 mL; catalyst dose: 4.5 mg/L Cu²⁺; pH = 6.59 ± 0.20]. (B) Proposed reaction mechanism of OA degradation during homogeneous catalytic ozonation with copper ion [Note: (1).Only representative Cu-oxalate complex is shown; and (2). Results shown in Figure S7A indicate the intermediate products are either unstable (e.g. radicals) or indistinguishable from oxalate (e.g. Cu-oxalate complex) using the current analytical method (HPLC-DAD)].