1	Supplementary Information for
2	
3	A pilot study of hybrid biological activated carbon (BAC) filter-ultrafiltration process for water
4	supply in rural areas: Role of BAC pretreatment in alleviating membrane fouling
5	
6	
7	
8	Fangshu Qu, Zhongsen Yan, Hao Wang, Xiaobo Wang, Heng Liang, Huarong Yu*, Junguo He,
9	Guibai Li
10	
11	School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin,
12	150090, P.R. China
13	
14	
15	
16	*Corresponding author.
17	Tel.: +86 451 86282252; Fax: +86 451 86282252.
18	E-mail address: huarongyu@gmail.com (Huarong Yu)

19 1. Bench-scale ultrafiltration (UF) system

20 As shown in Fig. S1, the bench-scale UF system was comprised of feed tanks, water level 21 regulators, membrane tanks, permeate tanks, membrane modules, values and pipes. The fee water 22 was driven through the membrane by a constant pressure provided by the water level difference 23 between the water level regulator and the permeate tank. A mini membrane module was used with 24 an effective membrane area of 0.05 m^2 .

Fig. S1 Schematic diagram of bench-scale filtration system

26 27

28 2. Fouling mechanisms

The classic filtration models include complete blocking, standard blocking, intermediate blocking 29 and cake filtration (Shen et al. 2010). Their schematic diagrams are presented in Fig.S4. In terms 30 of complete blocking, each particle completely blocks a certain pore, lead to the formation of 31 single fouling layer and the linear relationship between membrane permeability and foulant 32 33 amounts; For standard blocking, it is assumed that a decrease in pore volume is proportional to 34 permeate volume on the basis of particle depositing on the pore walls; Intermediate blocking is similar to completely blocking, but the restriction on single-layer deposition was relaxed. With 35 regards to cake filtration, particles are assumed to be stacked onto early arrivals on the membrane 36 surface forming a cake layer. 37

38

39 Fig. S2 Schematic diagrams of four filtration models: (a) complete blocking, (b) standard blocking,

40 (c) intermediate blocking, and (d) cake filtration (Shen et al. 2010).

3. Pollutants removal in BAC-UF and UF alone processes 42

43 Turbidity, COD_{Mn}, UV₂₅₄, NH₃-N in raw water, the effluent of BAC-UF process, and the effluent of UF alone process are shown in Fig. S3. In terms of turbidity removal, both processes showed 44 similar performance (0.061 ± 0.010 NTU in BAC-UF effluent, 0.068 ± 0.012 NTU in UF effluent). 45 For COD_{Mn} and UV₂₅₄ removal, BAC-UF process (1.45 ± 0.15 mg/L COD_{Mn} and 0.012 ± 0.002 46 47 cm⁻¹ UV₂₅₄ in effluent) performed better than UF alone (1.77 \pm 0.20 mg/L COD_{Mn} and 0.017 ± 0.002 cm⁻¹ UV₂₅₄ in effluent). UF alone removed almost no ammonia during the operation 48 $(1.17\pm0.30$ mg/L in influent and 0.98 ± 0.34 mg/L in effluent), while ammonia removal in BAC-49 50 UF was very efficient (0.05 ± 0.12 mg/L in effluent). This could be attributed to the biological 51 nitrification in BAC process.

52

55 Fig. S3 Performance of BAC-UF and UF alone in removing pollutants in mountain reservoir 56 water: (a) Turbidity, (b) COD_{Mn}, (c) UV₂₅₄ and (d) NH₃-N

58 4. Accumulation of Nitrite nitrogen in BAC filter treating mountain reservoir water

- 59 Concentrations of nitrite in raw water and BAC effluent were continuously measured with results
- 60 shown in Fig. S3. The apparent increase in the concentration of nitrite was observed within 0-40 d,
- 61 revealing the accumulation in the initial phase of the experiment.

62

63 Fig. S4 Concentrations of Nitrite nitrogen in raw mountain reservoir water and BAC effluent

64

65 5. Organics extracted from the fouled membranes

66 The DOC concentrations and UV_{254} of chemical cleaning wastewater were measured to evaluate 67 the amounts of organics irreversibly deposited on membrane surface. The results are shown in 68 Table S1.

69

Table S1 Amounts of organics irreversible deposited on membrane surface

	UF	BAC-UF
DOC (mg L ⁻¹)	104.9	51.2
UV ₂₅₄ (cm ⁻¹)	1.688	0.924

70

71

- 72
- 73

Capital cost						
	Items	Quantity	Price	Description		
	Frame and installation	1	¥4,600	Stainless steel		
	Feed pump	1	¥800	Nanfang CDL1-2, Height 11.5m; Q: 1m ³ /h; Powder: 0.55 kWh		
	Granular activated carbon	0.03 m ³	¥600	8×16 mesh cocoanut granular activated carbon, reactor height 1.5 m, reactor radius: 200 mm		
	Backwash pump	2	¥1,960	Nanfang CDL2-4, Height 30m; Q: 2m ³ /h; Powder: 0.55 kWh		
BAC-UF	Pipes and valves (a set)		¥3,400	PE pipes, float flowmeters, plastic valves and installation services		
	Membrane module	1	¥5,000	PVC UF membrane (LW3-700-PV2, Litree, China), 10 m ²		
	Air compressor	1	¥900	750-30L (Panda, China); Pressure<0.7MPa, Flow<135L/min;Powder:78Kw		
	Automatic control system 1		¥6,000	Siemens PLC (S7-200), LED screen, programming and installation services		
	Total		¥23,260			

Г

Table S3 Details of the capital cost of the UF process in the pilot plant.

Capital cost						
	Items	Quantity	Price	Description		
	Frame and installation	1	¥2,500	Stainless steel		
	Membrane module	1	¥5,000	PVC UF membrane (LW3-700-PV2, Litree, China), 10 m ²		
	Backwash pump	1	¥980	Nanfang CDL2-4, Height 30m; Q: 2m ³ /h; Powder: 0.55 kWh		
UF	Pipes and vavels (a set)	1	¥2,000	PE pipes, float flowmeters, plastic valves and installation services		
	Air compressor 1		¥900	750-30L (Panda, China); Pressure<0.7MPa, Flow<135L/min;Powder:78Kw		
	Automatic control system 1		¥6,000	Siemens PLC (S7-200), LED screen, programming and installation services		
	Total		¥17,380			

Operation and maintenance cost					
		Category		Price	Description
		Electricity	Feed	¥1.0700	Powder: 0.185kW, work for 24h/day, electricity price ¥0.6 per kWh
			Backwash	¥0.0048	Powder: 0.55 kW, 16 min per 7 d;
	BAC		Aeration	¥0.0004	Powder: 0.78 kW, Aeration time: 1 min per 7 d,
BAC-UF		Water	Backwash	¥0.0289	Only every week, hydraulic backwashing intensity:14L/m ² ·s; backwashing time: 16 min; water price ¥1.2 per ton
(Capacity:		Chemicals		¥0.0000	
2.5 ton/d^{-}	UF	Electricity	Feed	¥0.0000	Gravity driven
			Backwash	¥0.0088	Power 0.55 kW; 2min per 12h; electricity price ¥0.6 per kWh
		Water	Backwash	¥0.0192	60L/m ² h, 2min
		Membrane depreciation		¥1.0960	Life span of UF membrane: 5 year
		Chemicals		¥0.0000	
	Total	Total		¥2.2281	

79	Table S4 Details of the o	peration and maintenance	cost of the BAC-UF	process in the	pilot plant.

80 * The capacity of the BAC-UF process is calculated using the steady flux of the UF, i.e. 10.4 L/m²·h,

81 and factored by the membrane area (10 m^2) .

82

83 **Table S5** Details of the operation and maintenance cost of the UF process in the pilot plant.

Operation and maintenance cost				
	Category		Price	Description
	Electricity	Feed	¥1.5735	Powder: 0.185kW, work for 24h/day, electricity
				price ¥0.6 per degree
UE		Backwash	¥0.0129	Powder: 0.55 kW; backwashing time: 2min per
UF (Consistent				12h;
(Capacity: $1.7 \text{ top}/d^*$)	Water Backwash		¥0.0282	60L/ m ² ·h, 2min
1.7 ton/u)	Membrane depreciation		¥1.6117	Life span of UF membrane: 5 year
	Chemicals		¥0.0000	
	Total		¥3.2263	

84 * The capacity of the UF process is calculated using the steady flux of the UF, i.e. 7.0 $L/m^2 \cdot h$, and

85 factored by the membrane area (10 m^2).

86

87 Reference

- 88 Shen, Y., Zhao, W., Xiao, K. and Huang, X. (2010) A systematic insight into fouling propensity of
- 89 soluble microbial products in membrane bioreactors based on hydrophobic interaction and size
- 90 exclusion. J. Membr. Sci. 346(1), 187-193.