1	Supporting Information for:
2	Role of Tertiary Amines in Enhancing Trihalomethane and
3	Haloacetic Acid Formation During Chlorination of Aromatic
4	Compounds and a Natural Organic Matter Extract
5	Kun Huang $^{\$}$ and Amisha D. Shah $^{\$,\dagger,*}$
6 7 8 9 10 11	[§] School of Civil Engineering, Purdue University, West Lafayette, Indiana 47907 [†] Division of Environmental and Ecological Engineering, Purdue University, West Lafayette, Indiana 47907
12 13 14	* Corresponding author phone: 765-496-2470; fax: 765-494-0395; e-mail: adshah@purdue.edu
15	
16	
17	19 Pages
18	2 Text Sections
19	2 Tables
20	14 Figures
21	
22	
23	

24]	Fext S1. Tertiary A	mine Measurements
------	---------------------	-------------------

25	Additional experiments were performed to evaluate if the quenching agent, ascorbic acid,
26	added prior to tertiary amine analysis potentially affected the measured tertiary amine values.
27	This was of concern since ascorbic acid was added to reduce the residual free chlorine in the
28	experimental samples, but it was unclear if the chlorammonium intermediate (R_3N-Cl^+) formed
29	during these reactions could also be reduced back to its parent tertiary amine. This would then
30	alter how the amine measurements were defined such that these values could potentially
31	represent the concentration for only the residual amine or also include R_3N-Cl^+ as well. In order
32	to evaluate this effect, MES was chosen as a representative tertiary amine to be first exposed to
33	free chlorine over time, and then either not quenched or periodically quenched with excess (i)
34	ascorbic acid, (ii) RES, or (iii) both RES and SA. The MES concentration in these samples were
35	then immediately measured and were plotted in Fig. S1. In addition, the predicted MES
36	concentration was also plotted in Fig. S1 by simulating its kinetic degradation during
37	chlorination using Kintecus ¹ (equations used in this model simulation provided in Table S2).
38	
39	
40	
41	
42	
43	
44	
45	
46	

Figure S1. The measured residual MES concentration following exposure to free chlorine after not quenching or quenching with either ascorbic acid (AA) ($2 \times [\text{free chlorine}]_0$), RES (3mM), or both RES (3mM) and SA (3mM). The model curve represents the predicted MES degradation in the presence of free chlorine ([MES]₀ = 50 µM; [free chlorine]₀ = 280 µM; pH 7.1-7.2;)

62 The results first indicated a fairly close overlap between the unquenched samples and the model curve, which implied that the analytical technique used to quantify MES in these sample 63 matrices was sound and no artifactual formation occurred. Second, it appeared that all three 64 quenching techniques exhibited an increase in the MES concentration as compared to the 65 66 unquenched values/model curve. For example, at 10 min, the MES concentrations for ascorbic acid, RES, and RES + SA were 2.8, 1.8, and 5.3 times higher than the model curve values (Fig. 67 S1). This trend was followed through over 3 h, and it indicated that the greatest increase in MES 68 69 for the three quenching techniques followed in the order of RES+SA > ascorbic acid > RES (Fig. 70 S1). Such a pattern demonstrated that these quenching techniques, and especially ascorbic acid, did appear to have some effect on reducing the formed intermediate, MES-Cl⁺, back to MES. 71

Page 5 of 68

72 The extent of how much was reformed though remained unclear since these R_3N-Cl^+

73 intermediates can potentially undergo elimination and degrade to other by-products as well (see

74 later discussions and Scheme 1 in main text).

75

76 Text S2. Residual Free Chlorine Measurements.

Additional experiments were conducted to determine if the residual free chlorine 77 measurements taken for samples that also contained tertiary amines reflected only the total free 78 chlorine ([HOC1] + [OC1]) or also included other chlorinating agents (e.g., R_3N-C1^+). These 79 experiments were performed by exposing 25 µM free chlorine to MES or TMA ([TMA or 80 MES]₀/[free chlorine]₀ = 2) for 44 or 30 min, respectively. These exposure times were selected 81 since they were predicted to yield 95% conversion from the reactants to the respective 82 chlorammonium species, which was determined by performing model simulations with Kintecus 83 ^{®,1} (see Table 1 for rate constants used and Table S2 for the model reactions and conditions 84 used). Samples were then guenched with DPD and measured for their absorbance at 515 nm. The 85 results indicated that at these times, the absorbance readings were less than 0.01, which proved 86 that the R_3N-Cl^+ generated did not react with DPD. These results were expected because R_3N- 87 Cl⁺ is only expected to participate in electrophilic substitution reactions rather than be involved 88 in oxidation reactions. However, DPD must be oxidized through a one electron transfer reaction 89 in order to form the Würster dye (pink dye which elicits a colorimetric response).² Therefore, the 90 DPD method was found to only quantify the residual free chlorine concentration without 91 interference from the R₃N-Cl⁺ generated during these reactions. 92

- **Table S1.** The compound names, formula, molecular weights (MW), retention times (RT), parent and product masses, fragmentor
- voltages (FV), collision energies (CE), cell accelerator voltages (CAV), and source parameters (DGT, DGF, capillary and nebulizer)
 for LC/MS/MS analyses of HAAs and LC/MS analysis of MES.

Compound	Formula	MW (g/mole)	RT	Parent	Product	FV	CE	CAV	DGT	DGF	Capillary	Nebulizer
MCAA	CH ₂ ClCOOH	94.49	9.16	92.97	35.2	40	5	6	350	13	2500	40
MBAA	CH ₂ BrCOOH	138.95	9.39	136.92	78.9	55	13	2	350	10	4000	35
DCAA	CHCl ₂ COOH	128.94	11.59	126.93	82.9	60	5	6	350	13	2500	40
BCAA	CHBrClCOOH	173.39	11.96	170.88	126.8	60	5	4	300	10	4000	40
DBAA	CHBr ₂ COOH	217.84	12.32	214.83	170.7	55	9	2	350	10	4500	35
TCAA	CCl ₃ COOH	163.39	16.6	160.89	116.9	50	5	2	260	10	2500	40
BDCAA	CHBrCl ₂ COOH	207.84	18	160.85	78.9	55	9	2	290	10	5000	25
CDBAA	CHBr ₂ ClCOOH	252.29	20.7	204.8	78.9	55	9	2	260	10	4500	35
TBAA	CBr ₃ COOH	296.74	23.3	248.75	118.9	90	17	4	320	10	4500	30
MES	C ₆ H ₁₃ NO ₄ S	195.20	10.7	194.1		110		2	350	13	4000	40

- 97 Table S2. A description of the reactions and conditions used to model the kinetics of the MES
- reaction with free chlorine. A similar method was used assess the model kinetics for other
- 99 tertiary amines including TMA and TBA.

$k (M^{-1}s^{-1})$	Reaction	Comments
3.34E+08	$HOCl \Longrightarrow OCl^{-a}$	hypochlorite acid dissociation, $pK_a = 7.45^3$
6.66E+08	$OCl^{-} ==> HOCl^{-a}$	hypochlorite acid dissociation
9.26E+08	$MESH^+ = MES^{a}$	MES dissociation, $pK_a = 6.1^4$
7.36E+07	$MES \Longrightarrow MESH^+ a$	MES dissociation
1.83E+01	$MES + HOCl \implies MES-Cl^+ + OH^-$	MES reaction with HOCl ⁵

- ^a These reaction rates were estimated by assuming k_f/k_b is equal to [OCI]/[HOCI] which is
- 101 $0.33 \times 10^9/0.67 \times 10^9$. This value represents the ratio between the two acid-base species at pH 7.2.
- 102 These values were also multiplied by 10^9 in order to represent the fast equilibrium reached by
- these acid-base reactions.

Figure S2. Effect of MES on (a - f) the residual free chlorine and (g - i) MES % remaining over 24 h during chlorination of SA, PHE and RES in the presence of 10 or 50 μ M MES ([SA and PHE]₀ = 10 μ M; [RES]₀ = 1 μ M; [MES]₀ = 0, 10 and 50 μ M; [free chlorine]₀ = 280 μ M (19.9 mg/L-Cl₂) for SA and PHE, or 28 μ M (2.0 mg/L- Cl₂) for RES; pH 7.1-7.2).

112	Figure S3. Effect of	a) MES and (b) TBA on CHCl ₃ formation	over 24 h during
-----	----------------------	---------------	--------------------------------------	------------------

- 113 chlorination of RES (RES]₀ = 1 μ M; [MES or TBA]₀ = 0, 10 and 50 μ M; [free chlorine]₀ =
- 114 28 μ M (2.0 mg/L- Cl₂); pH 7.1-7.2). Error bars represent the standard deviation of \geq 3 115 replicates.

116

Figure S4. Effect of TBA on (a - f) the residual free chlorine and (g - i) TBA % remaining over 24 h during chlorination of SA, PHE and RES in the presence of TBA ([SA and PHE]₀ = 10 μ M; [RES]₀ = 1 μ M; [TBA]₀ = 0, 10 and 50 μ M; [free chlorine]₀ = 280 μ M

119 (19.9 mg/L-Cl₂) for SA and PHE, or 28 μ M (2.0 mg/L- Cl₂) for RES; pH 7.1-7.2)

¹²⁵ replicates.

126

Figure S6. Effect of amine dose $(0 - 50 \,\mu\text{M})$ on TCAA formation from (a, b) SA (c, d) PHE when exposed to MES, TMA, TBA or RAN after 24 h of chlorination ([SA and PHE]₀ = 10 μ M;

129 [RES]₀ = 1 μ M; [free chlorine]₀ = 280 μ M (19.9 mg/L-Cl₂) for SA and PHE, or 28 μ M (2.0 130 mg/L- Cl₂) for RES; pH 7.1-7.2).

- 131
- 132
- 133
- 134
- 135

Figure S7. Effect of amine dose (0 - 50 μ M) on summed formation of CHCl₃ and TCAA from

- 138 SA and PHE when exposed to (a) MES or (b) TMA after 24 h of chlorination ([SA and PHE]₀ =
- 139 10 μ M; [free chlorine]₀ = 280 μ M (19.9 mg/L-Cl₂); pH 7.1-7.2), Error bars represent the
- 140 standard deviation of \geq 3 replicates.

Figure S8. Differences in residual free chlorine when SA or PHE was exposed to $5 - 50 \mu$ M of (a) MES (b) TMA (c) TBA (d) RAN after 24 h of chlorination ([SA and PHE]₀ = 10 μ M; [free

145 chlorine]₀ = 280 μ M (19.9 mg/L-Cl₂); pH 7.1-7.2).

146

Figure S9. Effect of amine dose $(0 - 50 \mu M)$ on summed formation of CHCl₃ and TCAA from (a)

151 SA and (b) PHE when exposed to MES or TMA after 24 h of chlorination ([SA and PHE]₀ = 10

152 μ M; [free chlorine]₀ = 280 μ M (19.9 mg/L-Cl₂); pH 7.1-7.2), Error bars represent the standard 153 deviation of \geq 3 replicates.

Figure S10. Differences in residual free chlorine when (a, b) SA or (c, d) PHE was exposed to 5 -50 μ M of MES, TMA, TBA or RAN after 24 h of chlorination ([SA and PHE]₀ = 10 μ M; [free

chlorine]₀ = 280 μ M (19.9 mg/L-Cl₂); pH 7.1-7.2). RES-related data not plotted because residual free chlorine was < d.l. for all RES/TA/FC experiments.

160

163 Figure S11. Effect of MES on CHBr₃ formation when SA is exposed to varying HOBr doses (10

164 $-100 \ \mu\text{M}$) after 24 h ([MES]₀ = 10 μ M; [SA]₀ = 10 μ M; pH 7.1-7.2).

165

Figure S12. Effect of MES on (a) CHCl₃ formation (b) MES % remaining and (c, d) residual free chlorine when SRFA is chlorinated over 24 h ([SRFA]₀ = 10 μ M (0.12 mg/L as C); [MES]₀

171 = 0, 10 and 50 μ M; [free chlorine]₀ = 280 μ M (19.9 mg/L-Cl₂); pH 7.1-7.2).

- Figure S13. Effect of TBA on (a) CHCl₃ formation (b) TCAA formation (c) TBA % remaining 175
- and (d, e) residual free chlorine when SRFA is chlorinated over 24 h ([SRFA]₀ = 10 μ M (0.12 176
- mg/L as C); $[TBA]_0 = 0$, 10 and 50 μ M; [free chlorine]_0 = 280 μ M (19.9 mg/L-Cl₂); pH 7.1-7.2). 177

Figure S14. Effect of varying MES, TMA, TBA and RAN doses (0 - 50 µM) on (a, b) CHCl₃ (c) 181

TCAA formation and (d, e) residual free chlorine when SRFA is chlorinated for 24 h ([SRFA]₀ = 182 10 μ M; [free chlorine]₀ = 280 μ M (19.9 mg/L-Cl₂); pH 7.1-7.2). 183

184

- **References:** 185
- J. C. Ianni, in Kintecus, Windows Version 5.2, http://www.kintecus.com). 1. 186
- APHA/AWWA/WEF, Standard Methods for the Examination of Water and Wastewater, 187 2.

2012. 188

- 3. J. C. Morris, J. Phys. Chem., 1966, 70, 3798-3805. 189
- 4. N. Good, G. Winget, W. Winter, T. Connolly, S. Izawa and R. Singh, Biochemistry, 1966, 190

5, 467-477. 191

A. D. Shah, J.-H. Kim and C.-H. Huang, Water Res., 2011, 45, 6087-6096. 5. 192