Supporting Information

Structure-property-activity relationships in a pyridine containing azine-linked covalent organic framework for photocatalytic hydrogen evolution

Frederik Haase,^{†‡} Tanmay Banerjee, [†] Gökcen Savasci, [‡] Christian Ochsenfeld[‡] and Bettina V. Lotsch^{† \sharp §}*

[†]Max Planck Institute for Solid State Research, Heisenbergstaße 1, 70569 Stuttgart, Germany

[‡]Department of Chemistry, University of Munich (LMU), Butenandtstaße 5-13, 81377 München, Germany

[§]Nanosystems Initiative Munich (NIM) & Center for Nanoscience, Schellingstraße 4, 80799 München, Germany

*To whom correspondence should be addressed. E-mail: b.lotsch@fkf.mpg.de

List of tables

Table S1: Parameters of Rietveld refinement
Table S2: Dihedral angles in PTP-CHO and N_x -CHO building blocks obtained from optimized geometries on the PBEO-D3/def2-TZVP level of theory. Dihedral angles are reported in a clockwise order, starting from the upward pointing ligand A. Structures of the respective aldehydes can be found in Figure 1.
Table S3: Radiative and non-radiative rates of PTP-COF under different experimental conditions 5 -
Table S 4: Excitation energies for the PTP-CHO building block unit calculated on TD-PBEO/def2-TZVP level of theory. - 6 -
Table S5: Calculated vertical radical stabilization energies as differences in total energies between
radical anionic, radical cationic and neutral states of the PTP-CHO model system, PBE0-D3/def2-TZVP
level of theory

Table of figures

Figure S1: XRPD of PTP-COF synthesized in different solvent systems. DMAc = dimethyl acetamide, <i>o</i> -DCB = <i>o</i> -dichlorobenzene
Figure S2: Full IR Spectrum of PTP-CHO and PTP-COF
Figure S3: ¹³ C ssNMR of PTP-COF. Asterisks denote spinning side bands
Figure S4: Rietveld refinement of the PTP-COF shows a good fit to the experimentally observed powder pattern (Rwp: 1.833)
Figure S5: BET fit of the surface area of PTP-COF
Figure S 6: SEM image of the PTP-COF showing the spherical particles and the intergrown agglomerates
Figure S7: Hydrogen evolution under full spectrum light.
Figure S8: Spectrum of the xenon lamp with the dichroic mirror used for the AM1.5 photocatalysis experiments 10 -
Figure S9: Geometry of the PTP-CHO building block, optimized on PBE0-D3/def2-TZVP level of theory. Representative dihedral angles are marked in red11 -
Figure S10: Geometries of the N_x building block units optimized on PBE0-D3/def2-TZVP level of theory. Representative dihedral angles are marked in red12 -
Figure S11: HOMO and LUMO of the PTP-CHO building block obtained at PBEO/def2-TZVP level of theory 12 -
Figure S12: HOMO and LUMO of the N_x building block units obtained at PBEO/def2-TZVP level of theory
Figure S13: Orbital energies and Kohn-Sham Band-Gaps for the PTP-CHO building block in comparison with the N_x building block units, all data obtained at PBEO/def2-TZVP level of theory
Figure S14: Comparison of Kohn-Sham Band-Gaps and excitation energies on PBEO/def2-TZVP and TD-PBEO/def2-TZVP level of theory 13 -
Figure S15: Spin densities of the vertical radical anion for the PTP-CHO building block and the Nx building block units, calculated on PBE0-D3/def2-TZVP level of theory
Figure S16: 300 MHz 1 H NMR of 2 in CDCl ₃ 15 -
Figure S17: 75 MHz 13 C NMR of 2 in CDCl ₃ 15 -
Figure S18: 300 MHz 1 H NMR of 3 in CDCl ₃
Figure S19: 75 MHz 13 C NMR of 3 in CDCl ₃
Figure S20: 300 MHz 1 H NMR of 5 in CDCl ₃ 17 -
Figure S21: 75 MHz 13 C NMR of 5 in CDCl ₃ 17 -
Figure S22: 300 MHz ¹ H NMR of PTP-CHO in CDCl ₃ 18 -

Table S1: Parameters of Rietveld refinement

	PTP-COF			
Restraints & constraints	$a=b\neq c;$ $\alpha=\beta=90^{\circ},$ $\gamma=120^{\circ}.$			
Rwp	1.833			
a (Å)	27.7(8)			
b (Å)	27.7(8)			
<i>c</i> (Å)	3.55			
α (°)	90			
β (°)	90			
γ (°)	120			

Table S2: Dihedral angles in PTP-CHO and N_x -CHO building blocks obtained from optimized geometries on the PBE0-D3/def2-TZVP level of theory. Dihedral angles are reported in a clockwise order, starting from the upward pointing ligand A. Structures of the respective aldehydes can be found in Figure 1.

	Dihedral Angle [°]				
	А	В	С	Average	
PTP-CHO	16.3	16.3	-18.4	17.0	
N ₀ -CHO	39.1	39.1	39.1	39.1	
N ₁ -CHO	39.1	24.2	26.2	29.8	
N ₂ -CHO	7.5	24.4	24.5	18.8	
N ₃ -CHO	0.0	0.0	0.0	0.0	

Table S3: Radiative and non-radiative rates of PTP-COF under different experimental conditions

Sample	$\mathbf{\Phi}^{\mathrm{a}}$	τ, ns (amplitude)	$<\tau>^{b}$, ns	$k_r (\times 10^7 \text{ s}^{-1})^c$	$k_{nr} (imes 10^8 \text{ s}^{-1})^d$
Solid sample	0.0415	0.32 (10.58%), 1.13 (58.2%) and 3.54 (31.22%)	1.8	2.306	5.325
Water dispersion	0.0209	0.1 (9.73%), 0.57 (44.28%) and 1.55 (45.99%)	0.97	2.155	10.094
Photocatalytic conditions	0.0087	0.09 (14.86%), 0.37 (51.02%) and 1.07 (34.13%)	0.57	1.526	17.391

 Φ - Quantum yield; τ - Fluorscence lifetime fitted to three expoentials; $\langle \tau \rangle$ - Amplitude-weighted average lifetime;

 $k_{r}\xspace$ - radiative rate: $k_{nr}\xspace$ - non-radiative rate.

^a λ_{exc} =380 nm; ^b < τ > = $\Sigma a_i \tau_i / \Sigma a_i$; ^c $k_r = \Phi / \tau$; ^d $k_{nr} = (1-\Phi) / \tau$

Table S 4: Excitation energies for the PTP-CHO building block unit calculated on TD-PBE0/def2-TZVP level of theory.

	State	Excitation Energy [eV]	Oscillator Strength [km/mol]	Occupied Orbital	Virtual Orbital	Orbital Contribution [%]
РТР-СНО	6	4.06	0.8081	HOMO	LUMO+1	40.5
N ₀ -CHO	5	4.30	0.7813	НОМО	LUMO	33.2
N ₁ -CHO	5	4.22	0.5047	НОМО	LUMO+1	90.4
N ₂ -CHO	7	4.25	0.5450	НОМО	LUMO+1	81.7
N ₃ -CHO	9	4.24	0.4739	HOMO-4	LUMO+1	28.1

Table S5: Calculated vertical radical stabilization energies as differences in total energies between radical anionic, radical cationic and neutral states of the PTP-CHO model system, PBE0-D3/def2-TZVP level of theory.

		Neutral			
	$\Delta VCSE [eV]$	$\Delta VCSE$ [H]	VCSE [H]	Total Energy [H]	Total Energy [H]
PTP-CHO	-0.53	-0.01935494	0.30533824	-1312.19120015	-1312.49653838
N0-CHO	-0.52	-0.01928853	0.30540465	-1264.09669101	-1264.40209566
N1-CHO	-0.55	-0.02013946	0.30455372	-1280.13258163	-1280.43713535
N2-CHO	-0.34	-0.01231277	0.31238041	-1296.16429579	-1296.47667619
N3-CHO	0.00	0.00000000	0.32469318	-1312.19606741	-1312.52076059

		Neutral			
	$\Delta VASE [eV]$	$\Delta VASE [H]$	VASE [H]	Total Energy [H]	Total Energy [H]
PTP-CHO	0.34	0.01253149	-0.05811023	-1312.55464862	-1312.49653838
N0-CHO	0.59	0.02161944	-0.04902228	-1264.45111794	-1264.40209566
N1-CHO	0.32	0.01176033	-0.05888139	-1280.49601674	-1280.43713535
N2-CHO	0.12	0.00442453	-0.06621719	-1296.54289338	-1296.47667619
N3-CHO	0.00	0.00000000	-0.07064172	-1312.59140231	-1312.52076059

Figure S1: XRPD of PTP-COF synthesized in different solvent systems. DMAc = dimethyl acetamide, o-DCB = o-dichlorobenzene.

Figure S2: Full IR Spectrum of PTP-CHO and PTP-COF.

Figure S3: ¹³C ssNMR of PTP-COF. Asterisks denote spinning side bands.

Figure S4: Rietveld refinement of the PTP-COF shows a good fit to the experimentally observed powder pattern (Rwp: 1.833)

Figure S5: BET fit of the surface area of PTP-COF.

Figure S 6: SEM image of the PTP-COF showing the spherical particles and the intergrown agglomerates.

Figure S7: Hydrogen evolution under full spectrum light.

Figure S8: Spectrum of the xenon lamp with the dichroic mirror used for the AM1.5 photocatalysis experiments.

Figure S9: Geometry of the PTP-CHO building block, optimized on PBE0-D3/def2-TZVP level of theory. Representative dihedral angles are marked in red.

Figure S10: Geometries of the N_x building block units optimized on PBE0-D3/def2-TZVP level of theory. Representative dihedral angles are marked in red.

Figure S11: HOMO and LUMO of the PTP-CHO building block obtained at PBE0/def2-TZVP level of theory.

Figure S12: HOMO and LUMO of the N_x building block units obtained at PBE0/def2-TZVP level of theory.

Figure S13: Orbital energies and Kohn-Sham Band-Gaps for the PTP-CHO building block in comparison with the N_x building block units, all data obtained at PBE0/def2-TZVP level of theory.

Figure S14: Comparison of Kohn-Sham Band-Gaps and excitation energies on PBE0/def2-TZVP and TD-PBE0/def2-TZVP level of theory.

Figure S15: Spin densities of the vertical radical anion for the PTP-CHO building block and the Nx building block units, calculated on PBE0-D3/def2-TZVP level of theory.

Figure S16: 300 MHz ¹H NMR of **2** in CDCl₃.

Figure S17: 75 MHz ¹³C NMR of **2** in CDCl₃.

Figure S18: 300 MHz ¹H NMR of **3** in CDCl₃.

Figure S19: 75 MHz ¹³C NMR of **3** in CDCl₃.

Figure S20: 300 MHz ¹H NMR of **5** in CDCl₃.

Figure S21: 75 MHz $^{\rm 13}C$ NMR of **5** in CDCl₃.

Figure S22: 300 MHz ¹H NMR of PTP-CHO in CDCl₃.