Supplementary information

In-MOFs based on amide functionalised flexible linkers

J. Haddad, G. F. S. Whitehead, A. P. Katsoulidis, M. J. Rosseinsky

Identification code	C2_JH_CSA_36_4_twin1_hklf4
Empirical formula	$C_{11}H_{12}InNO_7$
Formula weight	385.04
Temperature/K	100
Crystal system	monoclinic
Space group	$P2_1/c$
a/Å	8.0483(8)
b/Å	7.2282(3)
c/Å	24.2472(18)
α/°	90.0
β/°	93.708(8)
$\gamma/^{\circ}$	90.0
Volume/Å ³	1407.62(18)
Z	4
$\rho_{calc}g/cm^3$	1.817
μ/mm^{-1}	1.708
F(000)	7602.0
Crystal size/mm ³	0.2 imes 0.2 imes 0.05
Radiation	MoK α ($\lambda = 0.71073$)
2Θ range for data collection/°	5.072 to 53.02
Index ranges	$-10 \le h \le 10, -9 \le k \le 9, -30 \le l \le 30$
Reflections collected	3669
Independent reflections	$3669 [R_{int} = 0.0929, R_{sigma} = 0.0520]$
Data/restraints/parameters	3669/219/182
Goodness-of-fit on F ²	1.094
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0867, wR_2 = 0.1869$
Final R indexes [all data]	$R_1 = 0.1138$, $wR_2 = 0.1993$
Largest diff. peak/hole / e Å ⁻³	1.69/-2.05

 Table S1. Crystallographic data and structure refinement summary for In(OH)CSA.

Figure S1. Asymmetric unit of **In(OH)CSA**, Dark grey = In, Light grey = C, Red = O, Blue = N, White = H

Identification code	C1_JH_PDG_47_2_sq
Empirical formula	$C_{12}H_{11}InN_2O_7$
Formula weight	410.05
Temperature/K	100
Crystal system	triclinic
Space group	P-1
a/Å	7.2372(4)
b/Å	10.1596(8)
c/Å	11.8645(8)
$\alpha/^{\circ}$	77.815(7)
β/°	78.748(5)
γ/°	85.773(5)
Volume/Å ³	835.84(10)
Z	2
$\rho_{calc}g/cm^3$	1.629
μ/mm ⁻¹	1.446
F(000)	404.0
Crystal size/mm ³	$0.2\times0.05\times0.05$
Radiation	MoK α ($\lambda = 0.71073$)
2Θ range for data collection/	° 3.574 to 52.74
Index ranges	$-9 \le h \le 6, -12 \le k \le 12, -14 \le l \le 14$
Reflections collected	9533
Independent reflections	3415 [$R_{int} = 0.0888$, $R_{sigma} = 0.1213$]
Data/restraints/parameters	3415/24/202
Goodness-of-fit on F ²	0.984
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0678, wR_2 = 0.1567$
Final R indexes [all data]	$R_1 = 0.1162, wR_2 = 0.1809$
Largest diff. peak/hole / e Å-	3 2.58/-1.41

 Table S2. Crystallographic data and structure refinement summary for In(OH)PDG.

Figure S2. Asymmetric unit of **In(OH)PDG**, Dark grey = In, Light grey = C, Red = O, Blue = N, White = H

	a (Å)	b (Å)	c (Å)	α (°)	β (°)	γ (°)
In(OH)CSA bulk	8.038(9)	7.223(8)	24.39(4)	90	93.93(3)	90
Al(OH)CSA bulk	8.05(5)	7.25(2)	24.3(1)	90	92.64(8)	90
In(OH)CSA single crystal	8.0483(8)	7.2282(3)	24.2472(18)	90	93.708(8)	90

Table S3 Unit cell parameters of bulk In(OH)CSA and Al(OH)CSA compared to the single crystal unit cell of In(OH)CSA

Table S4 Elemental analysis of the desolvated In(OH)CSA and Al(OH)CSA samples. H_2O has been readsorbed in the pores of these samples prior to analysis.

		C (%)	H (%)	N (%)
In(OH)CSA•H ₂ O	Theoretical	34.31	3.14	3.64
	Experimental	33.96	2.75	3.54
Al(OH)CSA•H ₂ O	Theoretical	44.46	4.07	4.71
	Experimental	44.09	3.84	4.81

Table S5 Unit cell parameters of bulk In(OH)PDG compared to the single crystal unit cell of In(OH)PDG

	a (Å)	b (Å)	c (Å)	α (°)	β (°)	γ (°)
In(OH)PDC bulk	7.24(2)	10.17(4)	11.88(6)	78.178(5)	78.522(6)	85.992(6)
In(OH)PDG single crystal	7.2372(4)	10.1596(8)	11.8645(8)	77.815(7)	78.748(5)	85.773(5)

Table S6 Elemental analysis of the desolvated In(OH)PDG and Al(OH)PDG samples. H₂O has been readsorbed in the pores of these samples prior to analysis.

		C (%)	H (%)	N (%)
In(OH)PDG•H ₂ O	Theoretical	33.67	3.06	6.54
	Experimental	33.64	2.74	6.86
Al(OH)PDG•H ₂ O	Theoretical	44.40	3.73	8.94
	Experimental	43.99	3.77	8.71

Figure S3 Thermogravimetric analysis of In(OH)CSA and In(OH)PDG under flow of air

Figure S4 Thermogravimetric analysis of Al(OH)CSA and Al(OH)PDG under flow of air