Electronic Supplementary Material (ESI) for Faraday Discussions. This journal is © The Royal Society of Chemistry 2017

Electronic Supporting Information For:

Design principles and multiscale simulations for determining nanostructure in selfassembling ionic liquids

Benjamin T. Nebgen^{1,2§*}, Harsha D. Magurudeniya^{1§}, Kevin Kwock^{1‡}, Bryan Ringstrand¹, Towfiq Ahmed², Sönke Seifert³, Jian-Xin Zhu^{1,2}, Sergei Tretiak^{1,2}, and Millicent A. Firestone^{1,*}

¹Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM USA 87545

Table of Contents.

1.	Comparison of force field parameters	Table S1
2.	Mean Squared Displacement (MSD) vs. time for MD simulation	Fig. S1
3.	Table of simulated and experimental water self-diffusion coefficients	Table S2
4.	ATR/FT-IR of C_{10} mim $^{\dagger}NO_3$ $^{-}$	Fig. S2A
5.	¹ H NMR of C ₁₀ mim ⁺ NO ₃ ⁻	Fig. S2B
	¹³ C NMR of C ₁₀ mim ⁺ NO ₃ ⁻	Fig. S2C
6.	ATR/FT-IR C ₁₀ mim ⁺ SCN ⁻	Fig. S3A
7.	¹ H NMR of C ₁₀ mim ⁺ SCN ⁻	Fig. S3B
	¹³ C NMR of C ₁₀ mim ⁺ SCN ⁻	Fig. S3C
8.	TGA of C ₁₀ mim ⁺ SCN ⁻	Fig. S4A
	DSC of C ₁₀ mim ⁺ SCN ⁻	Fig. S4B
9.	TGA of C ₁₀ mim ⁺ NO ₃	Fig. S5A
	DSC of C ₁₀ mim ⁺ NO ₃	Fig. S5B
10.	TGA of C ₁₀ mim ⁺ Cl ⁻	Fig. S6A
	DSC of C ₁₀ mim ⁺ Cl ⁻	Fig. S6B

²Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM USA 87545

³X-ray Sciences Division, Argonne National Laboratory, Lemont, IL USA 60439

Table S1: Comparison force field parameters created by Liu, Huang, and Wang¹ to EFP and SAPT2+3 energies² for various imidazolium cations with the chloride anion. The EFP energy shown here is that obtained with the aug-cc-pVDZ basis set. Structures and energies for EFP and SAPT 2+3 can be found in reference 2. Structure abbreviations are the same as used in reference 2: dmim: dimethyl-imidazolium, emim: 1-methyl-3-ethyl-imidazolium, bmim: 1-methyl-3-butyl-imidazolium.

Ion	Con	Force Field	EFP	SAPT 2+3	Force Field	EFP
	f	Energy	Energy	Energy	Error (%)	Error
		(kJ/mol)	(kJ/mol)	(kJ/mol)		(%)
dmim	1	364.3	414.1	423.4	14.0	2.2
dmim	2	381.2	437.7	405.9	6.1	7.8
emim	1	380.9	388.9	413.4	7.9	5.9
emim	2	396.4	408.6	409.7	3.3	0.3
emim	3	392.5	405.6	405.4	3.2	0.0
emim	4	382.0	406.4	418.2	8.6	2.8
bmim	1	375.0	383.4	411.6	8.9	6.9
bmim	2	391.6	380.4	408.1	4.0	6.8
bmim	3	387.3	410.6	406.5	4.7	1.0
bmim	4	377.1	411.6	419.3	10.1	1.8
				Average	7.1	3.6

^{1.} Z. P. Liu, S. P. Huang and W. C. Wang, *J Phys Chem B*, 2004, **108**, 12978-12989.

^{2.} S. Y. S. Tan and E. I. Izgorodina, *Journal of Chemical Theory and Computation*, 2016, **12**, 2553-2568.

Table S2: Table of simulated and experimental water self-diffusion coefficients. A temperature of 310 K was used for the production molecular dynamics simulations because the simulated value at that temperature matched the experimental self-diffusion coefficient at room temperature.

Temperature (K)	Simulated Self Diffusion (Ų/ps)Simulated	Experimental Self Diffusion (Ų/ps)		
288	-	0.176		
298	-	0.230		
300	0.170	-		
310	0.202	-		
323	-	0.398		
325	0.430	-		

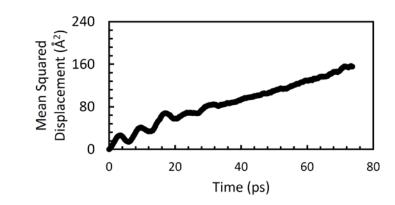
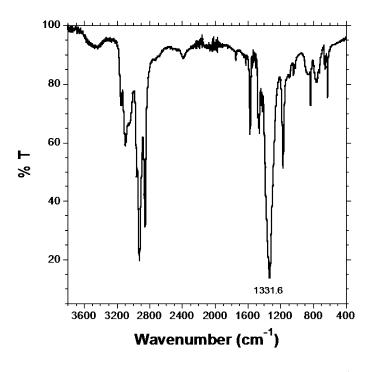
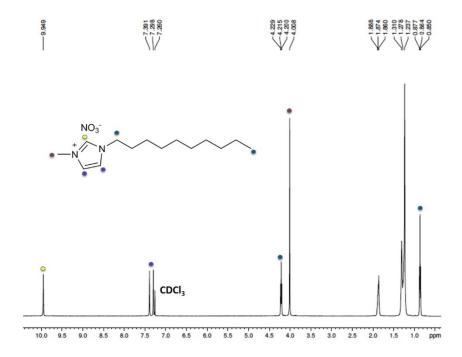




Figure S1. Mean squared displacement (MSD) vs. time for MD simulation

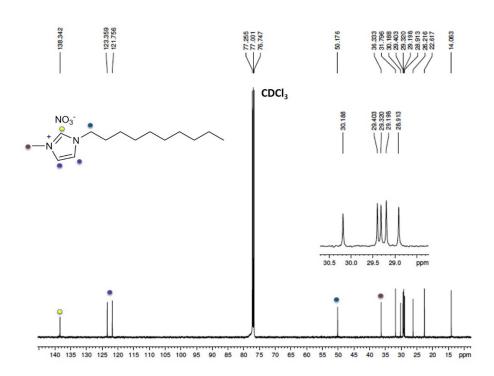


Figure S2A. ATR/FT-IR of dried 1-decyl-3-methylimidazolium nitrate, C_{10} mim $^+$ NO $_3$, but still contains a residual 0.92% (w/w) H $_2$ O as determined by TGA.

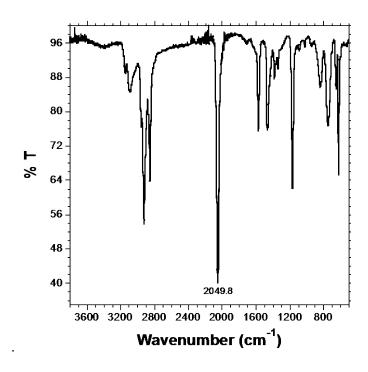
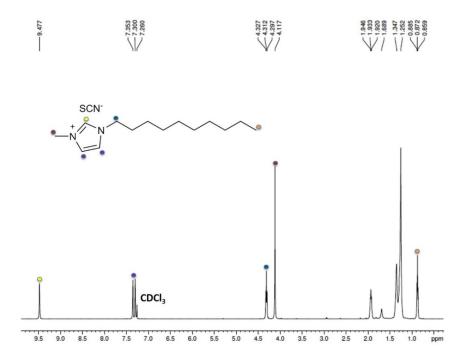


Figure S2B. ¹H NMR of dried 1-decyl-3-methylimidazolium nitrate, C₁₀mim⁺NO₃⁻ in CDCl₃. (Sample contains a residual 0.92% (w/w) H₂O, as determined by TGA).



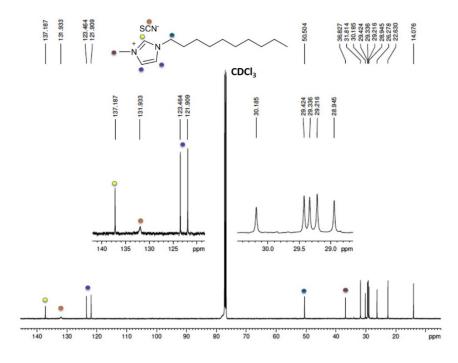

Figure S2C. ¹³C NMR of dried 1-decyl-3-methylimidazolium nitrate, C₁₀mim⁺NO₃⁻ in CDCl₃. (Sample contains a residual 0.92% (w/w) H₂O as determined by TGA.)


Figure S3A. ATR/FT-IR of dried -decyl-3-methylimidazolium thiocyanate, C_{10} mim⁺SCN⁻, but still contains a residual 4.9% (w/w) H_2O as determined by TGA.

Figure S3B. 1 H NMR of dried 1-decyl-3-methylimidazolium thiocyanate, C_{10} mim $^{+}$ SCN $^{-}$ in CDCl₃. (Sample contains a residual 4.9% (w/w) H₂O as determined by TGA.)

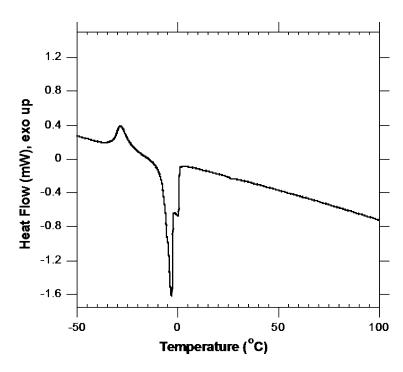


Figure S3C. ¹³C NMR of dried 1-decyl-3-methylimidazolium thiocyanate, C₁₀mim⁺SCN⁻ in CDCl₃. (Sample contains a residual 4.9% (w/w) H₂O as determined by TGA).

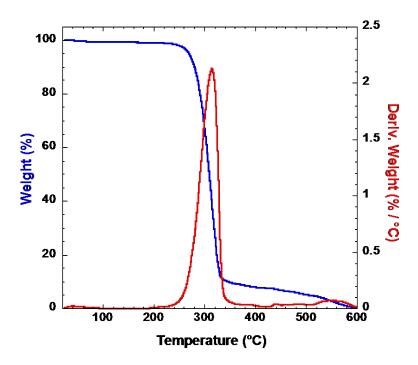
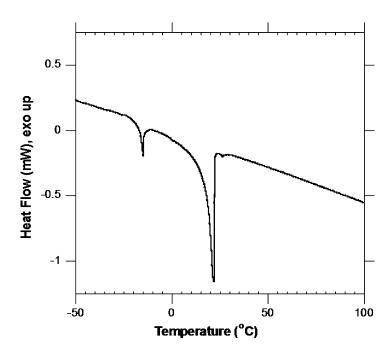
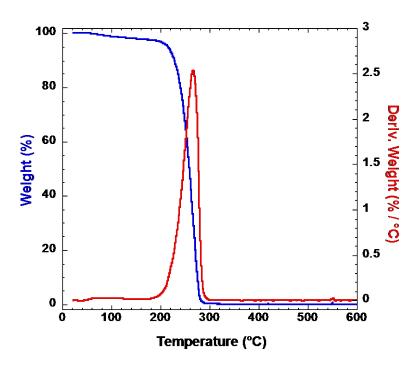


Figure S4A. Fast scan (5 $^{\circ}$ C min⁻¹) N₂ atmosphere TGA collected on dried 1-decyl-3-methylimidazolium thiocyanate, C₁₀mim⁺SCN⁻. Thermogram shows 4.9% (w/w) H₂O remains in the sample.




 $\begin{tabular}{lll} \textbf{Figure} & \textbf{S4B}. & The second heating DSC profile (2 $^{\circ}$C/min) collected on dried 1-decyl-3-methylimidazolium thiocyanate, C_{10}mim$^{+}$SCN$^{-}$. (Sample contained 4.9% (w/w) H_2O in the sample as determined by TGA.) Heating scan shows a $T_m = -6.74$ $^{\circ}$C.$

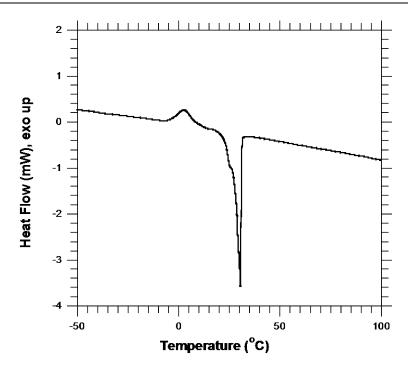

Figure S5A. Fast scan (5 $^{\circ}$ C min⁻¹) N₂ atmosphere TGA collected on dried 1-decyl-3-methylimidazolium nitrate, C₁₀mim⁺NO₃. Thermogram shows a residual 0.92% (w/w) H₂O remains in the sample.

Figure S5B. The second heating DSC profile (2 $^{\circ}$ C/min) collected on dried (1-decyl-3-methylimidazolium nitrate, [C₁₀mim] $^{+}$ [NO₃] $^{-}$. (Sample contained 0.92% (w/w) H₂O in the sample as determined by TGA.) Heating scan shows a T_m = 17.8 $^{\circ}$ C.

Figure S6A. Fast scan (5 $^{\circ}$ C min⁻¹) N₂ atmosphere TGA collected on dried 1-decyl-3-methylimidazolium chloride, C₁₀mim⁺Cl⁻. Thermogram shows 2% (w/w) H₂O remains in the sample.

Figure S6B. The second heating DSC profile (2 °C/min) collected on dried (1-decyl-3-methylimidazolium chloride, C_{10} mim $^+$ Cl $^-$. (Sample contained 2.0% (w/w) H_2 O in the sample as determined by TGA.) Heating scan shows a $T_m = 27.5$ ° C.