Electronic Supplementary Material (ESI) for Faraday Discussions. This journal is © The Royal Society of Chemistry 2017

> Protein Charge Transfer Absorption Spectra: An Intrinsic Probe to Monitor Structural and Oligomeric Transitions in Proteins, Ansari *et. al.*, Submitted to Faraday Discussions in September 2017

Supporting Information

Protein Charge Transfer Absorption Spectra: An Intrinsic Probe to Monitor Structural and Oligomeric Transitions in Proteins

Mohd. Ziauddin Ansari^a, Amrendra Kumar^a, Dileep Ahari^a, Anurag Priyadarshi^a, Padmavathi Lolla^b, Rashna Bhandari^b and Rajaram Swaminathan*^a

 ^aDepartment of Biosciences & Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India. E-mail: rsw@iitg.ernet.in
^bLaboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad 500001, India

CONTENTS

Page Number

Figure S1	Disorder prediction plots	3
Figure S2	Purification of PEST Wt and PEST M1	4
Figure S3	Mass Spectra of PEST Wt and PEST M1	5
Figure S4	Purification of DHN1	6
Figure S5	Mass Spectrum of DHN1	7
Figure S6	Comparison of absorption spectra with simulated scatter	8
Figure S7	PEST Wt, PEST M1 and DHN1 exist as a monomer in solution	9
Figure S8	Absorption spectrum of DHN1 in 0.1 N NaOH	10
Figure S9	Percent change in absorbance at different pH with respect to pH 7	11
Figure S10	Secondary structure content of PEST Wt and M1 at various pH	12
Figure S11	Fitted CD Spectra of PEST Wt and M1 at various pH	13
Figure S12	CD spectra of DHN1 and α_3 C at various pH	14
Figure S13	Percent change in absorbance at different temperatures with respect to 25 °C	15
Figure S14	Secondary structure content of PEST Wt and M1 at various temperatures	16
Figure S15	Fitted CD Spectra of PEST Wt and M1 at various temperatures	17
Figure S16	Percent change in absorbance with NaCl and KCl with respect to water	18
Figure S17	Concentration dependence of ProCharTS in HEWL aggregates	19

Figure S1 Disorder prediction plots

Figure S1: Intrinsic disorder prediction plots of the proteins for **[A]** PEST Wt; **[B]** PEST M1 and **[C]** DHN1 as obtained by various predictors. Disorder prediction was determined using Genesilico MetaDisorder server. (L. P. Kozlowski and J. M. Bujnicki, *BMC Bioinformatics*, 2012, 13, 111.)

Figure S2 Purification of PEST Wt and PEST M1

Figure S2: 15 % Reducing SDS-PAGE showing a single band of purified proteins for **[A]** PEST Wt and **[B]** PEST M1. Apparent molecular weight of PEST proteins on SDS-PAGE is approximately 15 kDa because of its anomalous mobility.

Figure S3 Mass Spectra of PEST Wt and PEST M1

Figure S3: Mass spectra of [A] PEST Wt and [B] PEST M1. The mass calculated from sequence were 8341.61 and 8527.82 Da.

Figure S4 Purification of DHN1

Lane 1 - Marker Lane 2 - DHN1

Figure S4: 15% Reducing SDS-PAGE shows the single band of purified DHN1 at 19 kDa. Higher molecular weight of DHN1 on SDS-PAGE is observed due to its anomalous mobility.

Figure S5 Mass Spectrum of DHN1

Figure S5: Mass spectrum of Dehydrin (DHN1). The mass calculated from sequence was 16955.33 Da.

Figure S6: Comparison of absorbance spectra with simulated Rayleigh scatter (using $1/\lambda^4$ dependence) for **[A]** PEST Wt; **[B]** PEST M1; **[C]** DHN1 and **[D]** HEWL aggregate formed in Glycine buffer (pH 2.0).

Figure S7 PEST Wt, PEST M1 and DHN1 exist as a monomer in solution

Figure S7: Variation of ProCharTS absorbance with protein concentration for **[A]** PEST Wt; **[B]** PEST M1 and **[C]** DHN1 at chosen wavelengths.

Figure S8: Absorption spectrum of DHN1 in 0.1 N NaOH. Inset shows DHN1 spectrum after subtracting contribution of Phe and Tyr (260 to 326 nm).

Figure S9 Percent change in absorbance at different pH with respect to pH 7

Figure S9: Percent change in absorption intensity measured every 25 nm at specified pH among the proteins **[A]** PEST Wt; **[B]** PEST M1; **[C]** DHN1 and **[D]** α_3 C with respect to pH 7. The change in absorbance at selected wavelengths were calculated as [(Absorbance at chosen pH – Absorbance at pH 7)/Absorbance at pH 7]×100.

Figure S10: Change in secondary structure content in **[A]** PEST Wt and **[B]** PEST M1 at various pH and in deionized water.

Figure S11: Fitted CD spectra of [A] PEST Wt and [B] PEST M1 by using DichroWeb server at pH 3 and 9.

Figure S12 CD spectra of DHN1 and α₃C at various pH

Figure S12: CD spectra of [A] 12.5 μ M DHN1 and [B] 30 μ M α_3 C at various pH.

Figure S13: Percent change in absorption intensity measured every 25 nm at specified temperature among the proteins [A] PEST Wt; [B] PEST M1 and [C] DHN1 with respect to room temperature (25 °C). The change in absorbance at selected wavelengths were calculated as [(Absorbance at chosen temperature – Absorbance at 25° C)/Absorbance at 25 °C]×100.

Figure S14: Change in secondary structure content in **[A]** PEST Wt and **[B]** PEST M1 at different temperatures.

Figure S15 Fitted CD Spectra of PEST Wt and M1 at various temperatures

Figure S15: Fitted CD spectra of [A] PEST Wt and [B] PEST M1 by using DichroWeb server at 25 and 85 °C.

Figure S16: Percent change in absorption intensity measured at 25 nm intervals among the proteins **[A]** PEST Wt; **[B]** PEST M1; **[C]** DHN1 and **[D]** α_3 C in 250 mM NaCl and 250 mM KCl with respect to absorption of proteins in deionised water. The change in absorbance were calculated at selected wavelengths as [(Absorbance in salt – Absorbance in water)/Absorbance in water]×100.

Figure S17: ProCharTS of HEWL aggregates formed at pH 12.2: Difference absorption spectra of 10 day old HEWL aggregates for different monomer concentrations is shown. All absorbance measurements were done immediately after transfer in 0.1 M sodium bicarbonate buffer (pH 9.3). Difference spectra are generated by subtracting the spectra of fresh HEWL monomer of same concentration in the same buffer as the transferred aggregates.