Supporting Information

Advances in the Sol-immobilisation Preparation of Supported Metal Nanoparticles with Tailored Catalytic Properties: Applications for the Hydrogenation of Nitrophenols.

Scott M. Rogers^{a, b}, C. Richard. A. Catlow^{a, b, c}, Diego Gianolio^d, Peter P. Wells^{a, d, e} and Nikolaos Dimitratos^c

a. UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Oxon, Didcot OX11 0FA, U.K.

b. Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.

c. Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, U.K.

d. Diamond Light Source, Harwell Science and Innovation Campus, Chilton, Didcot OX11 0DE, U.K.

e. School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K.

Table S1. MP-AES results of the sol-immobilised prepared 0.2 wt. % Pd/TiO₂ catalysts.

The metal loadings for the 1 wt. % Pd/TiO₂ catalysts was 0.72 wt. % Pd, with this value taken from the previous work.

	Concentrations (ppm) at different Pd wavelengths (nm) 1 st repetition		Concentrations (ppm) at different Pd wavelengths (nm) 2 nd repetition		Average Pd wt.%
	Pd 340.5	Pd 361.0	Pd 340.5	Pd 361.0	
0.2 PdA1	1.45	1.46	1.45	1.40	0.14
0.2 PdA2	1.80	1.79	1.73	1.75	0.18
0.2 PdA3	1.47	1.48	1.49	1.49	0.15
0.2 PdA4	1.65	1.65	1.65	1.66	0.17

Figure S1. UV-Vis spectra of the K_2PdCl_4 precursor and the subsequent Pd sol generated after reduction of K_2PdCl_4 by NaBH₄, in the presence of PVA; A) prepared in a H₂O solvent at 50°C and B) prepared in a H₂O solvent at 75°C.

Figure S2. Selected TEM images of 0.2 wt. % Pd/TiO₂ catalysts prepared at different temperatures, in H_2O solvent environment; A) 1°C (0.2 PdA1), B) 25°C (0.2 PdA2), C) 50°C (0.2 PdA3) and D) 75°C (0.2 PdA4).

Figure S3. Pd particle size distribution histograms of 0.2 wt. % Pd/TiO₂ catalysts prepared at different temperatures, in H₂O solvent environment; A) 1°C (0.2 PdA1), B) 25°C (0.2 PdA2), C) 50°C (0.2 PdA3) and D) 75°C (0.2 PdA4).

Figure S4. Linear combination fits for the different 0.2 wt. % Pd/TiO₂ catalysts using PdO and Pd foil as reference materials; A) 1°C (0.2 PdA1), B) 25°C (0.2 PdA2), C) 50°C (0.2 PdA3) and D) 75°C (0.2 PdA4).

Figure S5. FTIR spectra from CO-adsorption studies onto different 0.2 wt. % Pd/TiO₂ catalysts: (B) 0.2 Pd30, (C) 0.2 Pd50.

Figure S6. Conversion profiles of Pd catalysts for the hydrogenation of (A) *m*-nitrophenol and (C) *o*-nitrophenol. $Ln(C_t/C_0)$ versus time plots for Pd catalysts tested for (B) *m*-nitrophenol and (D) *o*-nitrophenol hydrogenation. Reaction conditions: *m*-nitrophenol:Pd molar ratio = 36, *o*-nitrophenol:Pd molar ratio = 14 NaBH₄:nitrophenol molar ratio = 24.