1 Chromatographic and mass spectrometry analysis of wheat flour prolamins, the 2 causative compounds of Celiac Disease Perez-Gregorio, M.R.*a, Días, R.a, Mateus, N.a, de Freitas, V.a 3 ^a LAQV-REQUIMTE Departamento de Química e Bioquímica, Faculdade de Ciências 4 da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal 5 *corresponding author: rosi.perez.gregorio@gmail.com 6 7 Tel. +351 220 402 653/351 220 402 655/351 8 9 SUPPLEMENTARY INFORMATION 10

11 This paper aims to contribute for the better knowledge about wheat prolamins, the main responsible in celiac disease (CD) onset. After prolamin extraction from commercial wheat 12 flour, the extracts were characterized by MALDI-TOF in order to analyze the intact proteins 13 profile. After that, and given the high complexity of each extract, the sample was fractionated 14 before analysis. The study was focused on gliadin extract (GLI) given its strong relationship 15 16 with CD, and it was fractionated by chromatographic methods. Each GLI fraction was further 17 characterized by MALDI-TOF to establish the proteomic profile. The composition of proteins of each fraction was further verified by nano-LC-MS/MS following a shotgun proteomics 18 19 approach. This supplementary information comprises the results obtained after digestion of the 20 richest GLI fractions, further analysis by nano-LC-MS/MS and MS/MS spectra treatment by using the Proteome Discoverer software as described in the experimental section. Some 21 additional information was included in this document to better understand the results presented 22 23 herein.

24

25 MATERIALS AND METHODS

26 Wheat Gluten extraction. 1 g of wheat flour was sequentially extracted with buffered salt 27 solution, 0.4 M NaCl (Sigma, UK), 50mL 70% (v/v) aqueous ethanol (Sigma, UK) and 50% 28 (v/v) 1-propanol (Merck, Germany) with 1% (w/v) dithiothreitol (DTT) (Sigma, UK) and Tris– 29 HCl at pH 7.5, in order to extract the water-soluble albumins (ALB) and salt-soluble globulins 30 (GLO), ethanol-soluble prolamins (GLI) and ethanol-insoluble prolamins (GLU), respectively. 31 A 20:1 (w/v) solids-to-liquid ratio was used for the extractions, which were initiated by 32 vortexing for 2 min at room temperature and continued with magnetic stirring during 1h. 33 Ethanol-insoluble prolamins were extracted at 60°C under nitrogen. Extractions for each sample 34 were done in duplicate and the supernatants were collected by centrifugation $(10000 \times \text{g} \text{ for } 15$ 35 min). In the case of sodium chloride, an additional wash with deionised water was performed in 36 order to remove the residual salt.

Fractionation of gliadins fractions. GLI fraction was submitted to a dialysis cleanup process 37 38 before fractionation. Two different cut-off membranes (Spectrum Laboratories, Inc., Canada) were assayed, 3.5kDa and 12-14kDa. The dialyzed GLI at 12-14kDa were further separated into 39 a preparative chromatographic system (Krauer K-1001 pump coupled to an Elite Lachrom L-40 2420 UV vis detector, Agilent Technologies). Sample was pumped at 4mL/min into a Purospher 41 42 C18 (250x25mm, 5µm). The mobile phases used were (A) water (0.1%TFA) and (B) acetonitrile (0.1%TFA) from 24%B to 56%B in 140min. The chromatograms were obtained at 43 214nm through the EZChrom Elite software (Agilent Technologies). The protein elution was 44 monitorized and collected by measuring absorbance at 214nm. After isolated proteins from GLI 45 (12-14kDa) were collected, these fractions were lyophilized and further characterized by mass 46 spectrometry. 47

48

49 RESULTS

50 Identification of gliadin sub-fractions by nano-LC-MS/MS. Protein fractions resulting 51 from GLI fractionation were submitted to enzymatic digestion. The hydrolysates were 52 further analyzed by tandem mass spectrometry. Each fingerprint peptide was, therefore, 53 used to sequence the peptides and further identify their percursor protein. The results are 54 described in the following table.

55

56 Table S1. Identification of the richest gliadin sub-fractions from FIII by nano-LC-

57 MS/MS and further data treatment in Proteome Discoverer

- 58
- 59
- 60
- 61
- 62
- 63

	Glutenins							Gliadins														Avenins						
	Code	HMW MW	Cove r	Scor e	Code	LMW MW	Cove r	Sco re	Code	alpha MW	Cove r	Sco re	Code	be MW	ta Cove r	Sco re	Code	ga MW	mma Cove r	Sco re	Code	ome MW	e ga Cove r	S c o	Code	MW	Cove r	Score
1	Q94IJ7 S4U1S7	86,2 99 90,4 17	99.8 76.5	104 69	Q9XGF0	42,2 42	86.9 0	32	A5JSA7 R9XW75 Q9M4M0	33,1 77 34,4 18 32,2 11	100. 00 87.1 4 98.5 8	71 97 71	M7ZZ V2 I0IT5 5	23,5 58 33,4 89	95.8 2 98.9 5	91 83	R9XT02 Q94G96	37, 261 38, 634	87.6 5 91.2 3	56 87				r e	D2KFH2	11,3 25	85.2 9	123
2	V9TP40 Q41553 E4W506	77,3 71 88,4 76 70,6 77	64.3 58.9 87.1	128 121 154	Q9XGF0	42,2 42	78.6 1	56	Q9M4M0 K7X1I3 Q41529	32,2 11 34,5 88 36,1 45	100. 00 98.6 6 100. 00	94 87 78													G910S9	32,3 52	80.8 2	56
ω	G4Y3Y1 Q52JL2 S4U142	85,2 43 75,6 91 90,3 36	69.1 1 68.9 2 67.4 3	116 33 41	R4JB56 Q0GQX1 Q9XGF0 Q0GQX0 O49958 B8Y0L6	36,4 58 33,9 78 42,2 42 33,4 36 39,7 91 39,8 40	70.6 6 70.5 7 70.2 7 69.1 1 68.9 2 67.4 3	110 124 106 25 45 67	X2KWL3 Q41533 R9XU81 A0A023W GX2 K7X119 B8XU32 D2X6C9 M4WFC9 R9XSW3 K7XEB5	32,1 09 29,9 32,8 84 23,2 20 35,4 44 34,5 22 34,5 22 34,5 22 34,5 22 34,5 22 34,5 22 34,5 23,5 00 33,00 47	79.7 4 100. 00 100. 00 82.8 9 93.9 0 97.3 3 98.2 0 100. 00 92.4 7 100.	60 75 15 91 75 72 15 67 66 96	I0IT5 7 10IT5 4 I0IT5 5 D2T2 K3 I0IT5 3 I0IT5 2	33,3 92 33,3 08 33,4 89 32,6 68 33,6 11 36,5 32	91.1 9 98.3 4 96.3 8 100. 00 99.1 0 86.5 9	97 48 65 86 72 15	B6UKM1 B6DQB3 D0ES81 R9XV56 Q30DX7	31, 933 35, 618 35, 990 32, 959 34, 124	100. 00 100. 00 100. 00 100. 00 100. 00	65 32 23 10 9.7	R9XVE2 D6QY51	30,8 62 40,4 93	87.6 5 74.3 5	4 5 5 6	D2KFG9	22,3 71	77.5	97
4	A4URY8 Q94IJ6 D7RT26	70,0 38 77,3 71 91,6 38	66.9 4 66.8 1 65.7 6	101 108 68	R4JB56 R4JAP5 Q9XGF0	36,4 58 39,9 50 42,2 42	75.0 7 66.9 4 66.8 1	14 29 26	R9XW75	34,4 18	92.6 1	67	I0IT5 7 Q3S4 V8	33,3 92 33,4 85	100. 00 97.8 6	87 65	B8XU40	34, 900	100. 00	45					D2KFH2 M8A4Q2	11,3 25 35,1 03	98.7 6 76.5 4	45 54
UI	Q38LF4	48,5 19	63.1 8	103	V9P737 R4JAP5 B2Y2S3 Q9XGF0	34,2 16 39,9 50 42,0 08 42,2 42	98.6 5 89.5 6 78.6 7 89.6 5	47 46 11 64	F6M8E7 Q41533 R9XW75 X2KS61 K7X1I9	17,1 51 29,9 96 34,4 18 34,5 17 35,4 44	95.5 9 91.1 9 98.3 4 96.3 8 97.3 9	74 71 94 87 78													D2KFH2 D2KFG9	11,3 25 22,3 71	95.6 4 75.6 4	98 45

6	A4URY8 A0A059U HD1	70,0 38 89,8 35	59.4 0 58.8 2	1.0 5 1.0 2	R4JB56 R4JAP5 Q9XGF0	36,4 58 39,9 50 42,2	82.8 9 93.9 0 97.3	100 45 102	J7I026	33,9 58	93.2 3	67					Q9FS73 Q41547	32, 576 36, 759	98.7 6 93.2 4	43 42					D2KFH2	11,3 25	76.5 5	14
7	A4URY8 Q03872 Q1KL95	70,0 38 89,8 19 84,6 77	69.1 1 58.1 9 58.0 1	1.1 6 1.3 2 1.1 3	R4JAP5 R4JDM1 Q9XGF0 A0A068F6 W7 V9P737	39,9 50 36,3 56 42,2 42 33,3 02 34,2 16	98.2 0 100. 92.4 7 82.8 9 93.9 0	34 116 89 115 100	A5JSA8 J71026 F6M8E7 K7XE68 K7X1L1 Q3YF11 Q9M4L8	33,2 13 33,9 58 17,1 51 33,5 52 32,1 13 32,8 93 32,3 70	98.0 0 90.3 0 93.6 1 80.2 3 100. 00 57.1 4 98.5 8	75 15 91 92 71 84 61	I0IT5 7	33,3 92	100. 00	56	Q958M8 B8XU40	2,2 40 34, 900	95.6 4 99.1 0	56 96					D2KFH2 G9I0S9	11,3 25 32,3 52	67.8 9 56,4 3	97 54
8	A4URY8 Q03872	70,0 38 89,8 19	56.0 0 54.6 7	57 28	Q9XGF0 A0A089VM B3 D3UAL6 B2Y2Q6 Q0GNF9	42,2 42 37,5 48 36,2 83 42,1 09 32,4 24	92.6 1 95.8 2 98.9 5 95.5 9 91.1 9	101 121 144 108 1.3 9	F6M8E7 X2KWL1 K7WV42 X2KS61	17,1 51 35,7 09 32,8 31 34,5 17	100. 00 98.6 6 100. 00 79.7 4	60 82 19 18	101T5 9	34,1 14	100. 00	93	R9XUT4 B6DQB2	37, 225 31, 847	95.4 3 73.9 8	88 42					D2KFH2 G9I0S9 D2KFG9	11,3 25 32,3 52 22,3 71	99.7 6 97.6 5 100. 00	79 45 67
9	Q94IJ6 B5TM09 A0MZ38	77,3 71 79,2 78 88,4 61	51.9 7 56.6 0 55.3 9	18 12 15	Q5MFH4 R4JAP5 Q00M55 F8SGN3 B2Y2Q7 Q9XGF0	34,4 85 39,9 50 40,0 31 40,0 71 41,9 81 42,2 42	98.3 4 96.3 8 97.3 9 93.2 3 100. 00 97.8 6	55 45 54 102 118 177	K7WV42 Q3YFI1 R9XV20 R9XW75 X2KS61	32,8 31 32,8 93 34,4 04 34,4 18 34,5 17	100. 00 82.8 9 93.9 0 97.3 3 98.2 0	89 11 75 17 20	M7ZZ V2 Q3S4 V7 I0IT5 7 P047 22	23,5 58 32,5 68 33,3 92 33,6 61	100. 00 98.6 5 75.9 6 99.1 2	56 21 23 65	A7XDG3 B6DQB8 U5UA50 F2X0K8	16, 206 32, 449 32, 691 33, 083	100. 00 98.7 6 99.4 3 100. 00	50 96 83 31					D2KFH2 V5M290	11,3 25 32,3 09	94.1 2 100. 00	23 45
10	A5HMG2 G3K725	79,4 67 93,6 48	65.7 9 78.9 8	18 110	R4JAN5	37,7 63	98.0 0	104	F6M8E7 K7X1L1 K7WV42 X2KS61	17,1 51 32,1 13 32,8 31 34,5 17	92.4 7 100. 00 92.6 1 95.8 2	91 8 1 16 70	Q3S4 V8	33,4 85	100. 00	47	B6DQB4 B6UKS0 R9XWD0	32, 295 34, 439 37, 229	96.7 8 78.9 8 98.3 4	97 43 68								
11					I3QPI2 B2Y2S2 Q8W3X0	17,3 99 38,9 77 38,8 18	89.7 6 97.6 5 99.0 0	142 40 43	Q41528 Q9M4M3 X2KWE1	33,1 93 30,6 25 35,5 67	98.9 5 100. 00 100. 00	32 76 89	101T5 7 101T5 8	33,3 92 30,9 59	91.6 5 97.6 5	95 56	P08453 L7R4Z9 Q6EEX0	37, 122 31, 294 31, 451	97.3 9 76.5 4 69.8 7	17 89 98	A0A0B5JD 20	39,2 42	100. 00	9 5	D2KFH2	11,3 25	65.7 6	90

					V9P757	35,3 38	100. 00	67	A0A023W GB8	32,3 24	100. 00	98	A0A060N 479	32, 0	96.7	23				
					R4JB46	31,6	89.7 6	56					R9XSZ2	32, 1	100	51				
					Q8GU18	31,1	100	31												
	Q94IJ6	77,3	67.8	112	B2Y2S2	38,9	69.8	120	B8XU37	32,7	95.5	42					D2KFH2	11,3	63.1	67
E.	T2HRF3	89,3	96.7	119													P0CZ06	32,4	59.4	53
2	D7RT26	91,6	73.9	67																
	A9QUS3	72,3	92.1	106					R9XV20	34,4	97.3	65	B6UKL3	33,	98.3	13	D2KFH2	11,3	76.8	82
5	T2HRF3	89,3	67.9	15					R9XW75	34,4	93.2	83		1			P0CZ06	32,4	99.1	75
	A3RF25	41,9	54.3	47	Q5MFP8	29,9	58.9	34	K7WV42	32,8	100	78	F2X0K8	33,	100	45				
14	Q670Q5	70,3	67.9	21	B8Y0L5	38,2	68.9	56	R9XV20	34,4	97.8	43		U						
-	A5HMG2	79,4	98.7	69																
	G3K725	93,6	100	115																