Electronic Supplementary Material (ESI) for Food & Function. This journal is © The Royal Society of Chemistry 2018

Supplementary Materials

Table legends

Table 1S. Mass spectrometry experimental parameters.

Table 2S. Experimental data of carbohydrates, rutin and 5-CGA calibration curves (Limit of detection (LOD) and of quantification (LOQ) were determined as the concentration of the standards providing signal to noise ratio (S/N) equal to 3 and 10, respectively).

Figure legends

Fig. 1S. Cell Viability Inhibition (CVI, %) \pm SD of different dose levels of PaDRw (100, 200, and 400 µg/mL) by SRB test on SH-SY5Y cell line at 48 h exposure time. Values are reported as mean \pm SD of measurements carried out on 3 samples (n = 3) analyzed 12 times. Vbn = vinblastine; Tx = Trolox®

Fig. 2S. PaDRw (a) UV-Vis spectrum; (b) LC-UV chromatogram recorded at 280 nm; (c) TIC chromatogram recorded in negative ion mode

Figure 3S. Main phenol and polyphenol metabolites identified in PaDRw-2 fraction.

Table 1S.

	PaDRw-1	PaDRw-2
Nebulisation gas (N ₂) flow rate (L/h)	30	50
Desolvation gas (N ₂) flow rate (L/h)	300	500
Source T (°C)	110	120
Desolvation T (°C)	400	500
Capillary voltage (kV)	3.0	2.8
Cone voltage (V)	10-55	10-55

Table 2S.

standard	Range	Calibration curve	R ²	LODa	LOQ ^a	RSD%b	RSD% ^c
fructose	0.5-10 mg/mL	y = 478869 x + 509615	0.9855	2.7	8.5	2.2-3.8	0.5-1.3
glucose	0.5-4 mg/mL	y = 504332 x + 590484	0.9974	2.5	10.1	1.8-3.3	0.7-1.6
sucrose	0.015-0.3 mg/mL	y = 4E+06 x + 30790	0.9998	1.2	4.3	1.9-2.7	0.6-2.6
rutin	0.01875-0.6 mg/mL	y = 123253x + 223.48	0.9999	4.68	18.7	3.1-4.6	0.3-3.0
5-CGA	0.0156-10 mg/mL	y = 210216x - 2677.2	0.9992	3.9	15.6	0.5-2.7	0.2-2.1

^a Expressed as ng on column

^b Inter-day precision, expressed as relative standard deviation (RSD (%) = (SD/mean) ×100)

^c Intra-day precision, expressed as relative standard deviation (RSD (%) = (SD/mean) ×100)

Fig. 1S.

Fig. 3S.

$$R_2O$$
 5 4 OR OR_1

1' R = caffeoyl; $R_1 = R_2 = H$ **2'** R = *p*-coumaroyl; $R_1 = R_2 = H$ **3'** R = R_1 = H; R_2 = caffeoyl **4'** $R = R_2 = H$; $R_1 = caffeoyl$ **7'** R = R₁ = H; R₂ = *p*-coumaroyl **8'** R = R₂ = H; R₁ = *p*-coumaroyl **10'** R = R_2 = caffeoyl; R_1 = H

R = OH caffeoyl R = H *p*-coumaroyl

$$R_1$$
 OR R_1 OR R_2

9' R = hexose; R_1 = OH; R_2 = rutinose

11' R = H; R_1 = OH; R_2 = rutinose

12' R = H; R_1 = OH; R_2 = hexose 13' R = R_1 = H; R_2 = rutinose 14' R = R_1 = H; R_2 = hexose