Supplementary Materials

Table legends

Table 1S. Mass spectrometry experimental parameters.
Table 2S. Experimental data of carbohydrates, rutin and 5-CGA calibration curves (Limit of detection (LOD) and of quantification (LOQ) were determined as the concentration of the standards providing signal to noise ratio (S / N) equal to 3 and 10 , respectively).

Figure legends

Fig. 1S. Cell Viability Inhibition (CVI, \%) \pm SD of different dose levels of PaDRw (100, 200, and $400 \mu \mathrm{~g} / \mathrm{mL}$) by SRB test on SH-SY5Y cell line at 48 h exposure time. Values are reported as mean \pm SD of measurements carried out on 3 samples $(\mathrm{n}=3)$ analyzed 12 times. $\mathrm{Vbn}=$ vinblastine; $\mathrm{Tx}=$ Trolox ${ }^{\circledR}$

Fig. 2S. PaDRw (a) UV-Vis spectrum; (b) LC-UV chromatogram recorded at 280 nm ; (c) TIC chromatogram recorded in negative ion mode

Figure 3S. Main phenol and polyphenol metabolites identified in PaDRw-2 fraction.

Table 1S.

	PaDRw-1	PaDRw-2
Nebulisation gas $\left(\mathrm{N}_{2}\right)$ flow rate (L/h)	30	50
Desolvation gas $\left(\mathrm{N}_{2}\right)$ flow rate (L/h)	300	500
Source T $\left({ }^{\circ} \mathrm{C}\right)$	110	120
Desolvation T $\left({ }^{\circ} \mathrm{C}\right)$	400	500
Capillary voltage (kV)	3.0	2.8
Cone voltage (V)	$10-55$	$10-55$

Table 2S.

standard	Range	Calibration curve	\boldsymbol{R}^{2}	LOD $^{\text {a }}$	LOQ $^{\text {a }}$	RSD\%	RSD\%

${ }^{a}$ Expressed as ng on column
${ }^{b}$ Inter-day precision, expressed as relative standard deviation $($ RSD $(\%)=(S D /$ mean $) \times 100)$
${ }^{c}$ Intra-day precision, expressed as relative standard deviation $(R S D(\%)=(S D /$ mean $) \times 100)$

Fig. 1S.

Fig. 2S.
(a)

(b)

(c)

Fig. 3S.

1' $\mathrm{R}=$ caffeoyl; $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H}$
2' $\mathrm{R}=$ p-coumaroyl; $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H}$
3' $\mathrm{R}=\mathrm{R}_{1}=\mathrm{H}$; $\mathrm{R}_{2}=$ caffeoyl
4' $R=R_{2}=H ; R_{1}=$ caffeoyl
7' $\mathrm{R}=\mathrm{R}_{1}=\mathrm{H} ; \mathrm{R}_{2}=$ p-coumaroyl
8' $\mathrm{R}=\mathrm{R}_{2}=\mathrm{H} ; \mathrm{R}_{1}=$ p-coumaroyl
10' $R=R_{2}=$ caffeoyl; $R_{1}=H$

9' $\mathrm{R}=$ hexose; $\mathrm{R}_{1}=\mathrm{OH} ; \mathrm{R}_{2}=$ rutinose
11' $\mathrm{R}=\mathrm{H} ; \mathrm{R}_{1}=\mathrm{OH} ; \mathrm{R}_{2}=$ rutinose
12' $\mathrm{R}=\mathrm{H} ; \mathrm{R}_{1}=\mathrm{OH} ; \mathrm{R}_{2}=$ hexose
13' $R=R_{1}=H ; R_{2}=$ rutinose
14' $R=R_{1}=H ; R_{2}=$ hexose

