Electronic Supplementary Information (ESI)

# Developing Hierarchically Porous MnO<sub>x</sub>/NC Hybrid Nanorods for Oxygen Reduction and Evolution Catalysis

Jay Pandey,<sup>a</sup> Bin Hua,<sup>b</sup> Wesley Ng,<sup>a</sup> Ying Yang,<sup>c</sup> Koen van der Veen,<sup>a</sup> Jian Chen,<sup>d</sup> Norbert J. Geels,<sup>a</sup> Jing-Li Luo,<sup>b</sup> Gadi Rothenberg,<sup>a</sup> and Ning Yan<sup>\*a</sup>

<sup>a</sup> Van `t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands E-mail: <u>n.yan@uva.nl</u>, Tel: +31 20 525 6468

<sup>b</sup> Department of Chemical and Materials Engineering, University of Alberta, T6G 1K9, Edmonton, AB, Canada

<sup>c</sup> Department of Mechanics and Engineering Structure, Wuhan University of Technology, 430070, Wuhan, China

<sup>d</sup> National Institute for Nanotechnology, National Research Council of Canada, T6G 2M9, Edmonton, AB, Canada

This file contains

- 1. Experimental details
- 2. Table S1-S2
- 3. Figure S1-S11

#### 1. Experimental details

### 1.1 Electrocatalyst synthesis

The electrocatalyst was synthesized using a hydrothermal reaction in a Teflon-lined stainless steel (SS) autoclave. Initially, 2.5 mmol of manganese acetate (Mn(CH<sub>3</sub>COO)<sub>2</sub>, 99% purity, Sigma Aldrich) and 2.5 mmol of nitrotriacetic acid (NTA) (N(CH<sub>2</sub>COOH)<sub>3</sub>, 99% purity, Alfa Aesar) (1:1 mole ratio) were mixed together in 50 ml of de-ionized (DI) water. The suspension was then transferred to the autoclave (total capacity: 75 ml) for a reaction at 180 °C for 6 h. The subsequently obtained white thick slurry was centrifuged (2600 rpm for 15 min) and washed several times with ethanol and DI water to get the white powder followed by drying at 80 °C for 6 h. Three sets of reaction were done to give sufficient MnNTA yield. In the pyrolysis step, approximately 1.5g of MnNTA powder was placed in a quartz tube, pyrolyzed at 900 °C under argon (99.99% purity) atmosphere for 1 h. The heating rate was 10 °C min<sup>-1</sup> and the Ar flow rate was 130 ml min<sup>-1</sup>. The yield of MnO/NC was approximately 400 mg. In the final step of mild calcination, MnO/NC powder was well dispersed in an alumina crucible, and oxidized in static air at 200 °C in a furnace. The final MnO<sub>x</sub>/NC hybrid rods contained ~20 wt% MnO<sub>x</sub>.

The synthesis of  $MnO_x$  rod was prepared by calcinating MnNTA rods in air at 900 for 1 h which produced  $Mn_2O_3$  nanorods. The obtained rods were reduced in 5 % H<sub>2</sub> +N<sub>2</sub> at 800 °C for 15 min to yield MnO rods. After a similar 200 °C-oxidation,  $MnO_x$  rods were acquired. The  $MnO_x/C$  composite was acquired by mixing  $MnO_x$  rods and carbon black during the ink preparation, as detailed below.

The synthesis of NC also used NTA-based precursor according to our previous work.<sup>[1,2]</sup> Briefly, potassium and magnesium cations were employed to adjust the nitrogen content in NC. The formed NC precursor contained 32 mol.% of HMgNTA and 68mol.% of KMgNTA. The final NC was doped with ~ 1.4 at.% of N, which was comparable with the N content in  $MnO_x/NC$  (1.5 at.%).

#### 1.2 Electrochemical procedures

We have prepared five catalyst inks in the experiments, consisting of commercial Pt/C (20 wt % Pt on Vulcan XC 72, fuel cell grade, Premetek, USA), commercial Ru/C (5 wt% Ru, reduced, Alfa Aesar), NC,  $MnO_x/NC$  and  $MnO_x/C$ . In a typical preparation excluding  $MnO_x/C$ : 1 ml ethanol, 10 µL Nafion® (D-521 dispersion 5 wt % in water/isopropanol, Alfa Aesar 42117) and 1 mg powder were mixed in a vial and sonicated overnight. For the preparation of  $MnO_x/C$  ink, 1.5 mg power and 0.5 mg of

carbon black were added to the ink before sonication. The subsequently obtained  $MnO_x/C$  contained 20 wt% carbon, identical with that of the  $MnO_x/NC$  hybrid.

Dropcasting was applied to prepare the rotating disc electrode (RDE, glassy carbon electrode, Gamry, USA) with a diameter equaled to 5 mm (A = 0.196 cm2). Initially, the RDE was polished sequentially by diamond polishing films with 1 and 0.1  $\mu$ m particles (Allied High Tech Products, USA) with water rinse. Inks were then dropcasted by 5  $\mu$ L portions x 6, with air drying in between. The total catalyst loading was 30  $\mu$ g, or 153  $\mu$ g/cm<sup>2</sup> for all catalyst except for MnO<sub>x</sub>/C which was 306  $\mu$ g/cm<sup>2</sup>).

Electrochemical experiments were performed in a classic 3-electrode setup. 0.1 M KOH solution, stabilized at  $25.0 \pm 0.1$  °C in a water bath, was used as the electrolyte. A Gamry Reference 600 potentiostat was employed, together with a Gamry RDE710 rotating electrode setup. Saturated calomel electrode (SCE, Gamry, USA) separated from the solution by a 10 cm bridge was used as a reference electrode, and a graphite rod (Gamry, USA) as a counter electrode. Potentials were reported vs. reversible hydrogen electrode (RHE) in all cases by adding 1.011 for pH 13. Nitrogen (99.999%) or oxygen (99.999%) were bubbled for 30 minutes to saturate the solution, and were flowed above the solution ('gas blanket') during the experiments. In ORR measurements, the linear scan voltammograms (LSV) were obtained with a scan rate of 10 mV s<sup>-1</sup> at rotating speeds of 400, 600, 900, 1200, 1600, 2000 and 2400 rpm. In OER, the rotating speed was fixed at 1600 rpm. Cyclic voltammetry was measured with the same parameters but without rotation.

The solution resistance was determined initially, and 90% of the value (typically 30–50 Ohm) was used as a positive correction factor in an automatic iR drop correction in voltammetric and chronoamperometric measurements. CV was performed between 0.8 to 1.2 V vs. RHE to measure the capacitive current for all the examined catalysts, and a post-measurement correction was applied. The ORR chronoamperometry was performed at the approximately the half-wave potential of the catalyst. In the methanol resistance study, 20 mL methanol was injected into the electrolyte to yield a roughly 3 M methanol concentration.

## 1.3 Koutecký-Levich plots

The number of electrons transferred in the reaction was estimated by the Koutecký-Levich equation:<sup>[3]</sup>

$$\frac{1}{J} = \frac{1}{B\omega^{-1/2}} + \frac{1}{J_K}$$

Where *J* is the measured current density (mA cm<sup>-2</sup>),  $J_K$  is the kinetic (exchange) current density (mA cm<sup>-2</sup>),  $\omega$  is the RDE rotation rate (rpm), and *B* is given by:

 $B = 0.2nFC_0 D_0^{2/3} v^{-1/6}$ 

Where 0.2 is the arithmetic correction factor for  $\omega$  in rpm, *n* is the number of electrons transferred per mol, *F* is Faraday's constant, *C*<sub>0</sub> is the concentration of dissolved O<sub>2</sub> (1.2 mmol ml<sup>-1</sup> at 25 °C in 0.1 M KOH), *D*<sub>0</sub> is the diffusion coefficient of O<sub>2</sub> (1.9·10<sup>-5</sup> cm<sup>2</sup> s<sup>-1</sup> at 25 °C in 0.1 M KOH), and *v* is the kinematic viscosity of the 0.1 M KOH electrolyte at 25 °C (0.01 cm<sup>2</sup>/s). By plotting 1/*J* versus  $\omega^{-1/2}$  at different potentials and fitting linear equations to the data, the number of electrons (*n*) could be calculated from the slope (1/*B*).

## 1.4 Materials characterizations

X-Ray diffraction (XRD) patterns were obtained using a MiniFlex II diffractometer equipped with CuK $\alpha$  radiation. The X-ray tube was operated at 30 kV and a current of 5 mA. Nitrogen adsorption isotherms where measured on a Thermo Scientific Surfer instrument at 77 K. The sample was dried in vacuum (1 × 10<sup>-3</sup> mbar) for 3 h at 200 °C prior to the measurement. Temperature programmed reduction (H<sub>2</sub>-TPR) was performed on a Thermo TPDRO-1100 instrument equipped with a thermal conductivity detector (TCD). 10~15 mg of the catalyst was loaded to the quartz tube reactor, and all the measurements were carried out in a stream of 5% H<sub>2</sub> in N<sub>2</sub> (40 ml min<sup>-1</sup>) with a heating rate of 10 K min<sup>-1</sup>. Thermogravimetric analysis (TGA) coupled with differential scanning calorimetry (DSC) was performed using a NETZSCH Jupiter<sup>®</sup> STA 449F3. All the measurements were done in the temperature range 30-900 °C under the air atmosphere with flow rate of 20 ml min<sup>-1</sup> at a heating rate of 5 K min<sup>-1</sup>.

Scanning electron microscope (FEI Verios 60 with ETD detector) was used to observe the morphology of the samples. Transmission electron microscope (TEM) analysis was performed using a JEOL 2200 FS TEM. X-ray photoelectron spectroscopy (XPS) was carried out using a Kratos AXIS equipped with a monochromatic Al K $\alpha$  X-ray source. The base pressure in the analytical chamber was maintained at 10<sup>-9</sup> mbar. The obtained spectra were analyzed using the Thermo Avantage software calibrated to the C 1s binding energy of 285.0 eV. For curve fitting and deconvolution, a Shirley-type background subtraction and a Gaussian-Lorentzian peak shape were applied. In the assignment of nitrogen functionalities, we avoided using the pyrrolic, because they are known to decompose at temperatures above 800 °C to either pyridinic or graphitic nitrogen.<sup>[4, 5]</sup>

Table S1. Performance comparison of selected excellent non-noble metal ORR catalyst reported recently. All the data were recorded in alkaline condition with a rotation speed of 1600 rpm. Note that all the mateials, other than  $MnO_x/NC$ , were only reported ORR active.

| Journal name, Year              | Catalyst                                                                     | E <sub>orr-1/2</sub> (V vs. RHE) | Ref. |
|---------------------------------|------------------------------------------------------------------------------|----------------------------------|------|
| Angewandte Chem. Int. Ed., 2016 | Co-N <sub>x</sub> single-atom site                                           | 0.88                             | 6    |
| J. Am. Chem. Soc., 2015         | graphene quantum dots                                                        | ~0.82                            | 7    |
| This work                       | MnO <sub>x</sub> /NC                                                         | 0.80                             |      |
| Nano Energy, 2016               | Co <sub>3</sub> O <sub>4</sub> -Mn <sub>3</sub> O <sub>4</sub> /GO composite | 0.78                             | 8    |
| Adv. Funct. Mater., 2016        | $PrBa_{0.85}Ca_{0.15}MnFeO_{5+\delta}$                                       | 0.77                             | 9    |
| Angewante Chem. Int. Ed., 2015  | nitrogen-doped carbon                                                        | 0.74                             | 10   |
| Adv. Mater., 2016               | Co/N contained CNT                                                           | 0.73                             | 11   |
| Nat. Commun., 2015              | Co <sub>3-x</sub> Mn <sub>x</sub> O <sub>4</sub>                             | 0.73                             | 12   |
| Chem. Commun., 2015             | N-doped carbon dots                                                          | 0.71                             | 13   |
| Angewante Chem. Int. Ed., 2016  | $\lambda$ -MnO <sub>2-<math>\delta</math></sub>                              | 0.67                             | 14   |
| ChemSusChem, 2016               | MnO <sub>2</sub> /m-ZSM-5                                                    | 0.56                             | 15   |

Table S2. Performance and synthesis comparisons of selected excellent non-noble metal oxygen bifunctional catalyst reported recently. Other than specified, all the data were recorded in alkaline condition with a rotation speed of 1600 rpm.

| Journal name, Year              | Catalyst                                       | Key Precursors and Methods                                 | E <sub>orr-1/2</sub> (V vs. RHE) | E <sub>oer-10</sub> (V vs. RHE) | ΔE (V)              | Ref. |
|---------------------------------|------------------------------------------------|------------------------------------------------------------|----------------------------------|---------------------------------|---------------------|------|
| Angewandte Chem. Int. Ed., 2016 | Co@Co <sub>3</sub> O <sub>4</sub> /N doped CNT | metal-oganic framework (ZIF-67)                            | 0.80                             | 1.65                            | 0.85                | 16   |
| This work                       | MnO <sub>x</sub> /NC                           | hydrothermal synthesis                                     | 0.80                             | 1.67                            | 0.87                |      |
| Energ. Environ. Sci., 2016      | Co <sub>9</sub> S <sub>8</sub> /N-graphene     | hydrothermal + NH <sub>3</sub> plasma teatments            | 0.75                             | 1.64                            | 0.89                | 17   |
| J. Am. Chem. Soc., 2016         | Nano structured α-MnO <sub>2</sub>             | KMnO <sub>4</sub> and hydrothermal synthesis               | 0.79                             | 1.72                            | 0.93                | 18   |
| Energ. Environ. Sci., 2016      | Co <sub>25</sub> Zn <sub>75</sub> -C1100       | ZIF-8 metal-organic framework                              | 0.81                             | 1.74                            | 0.93                | 19   |
| J. Am. Chem. Soc., 2014         | amorphous CoFe <sub>2</sub> O <sub>~3.66</sub> | hydrothermal synthesis                                     | 0.76                             | 1.72                            | 0.96                | 20   |
| Angewante Chem. Int. Ed., 2014  | Mn <sub>x</sub> O <sub>y</sub> /NC             | porphyrins and phthalocyanines                             | ~0.71 <sup>[a]</sup>             | 1.68                            | 0.97                | 21   |
| Chem. Commun., 2015             | $Ni_{0.6}Co_{2.4}O_4$ film on Ni foil          | electrodeposition                                          | 0.77                             | 1.76                            | 0.99 <sup>[b]</sup> | 22   |
| Appl. Catal. B-Environ., 2017   | NiCoMnO <sub>4</sub> /N-rGO                    | graphene oxide + NH <sub>4</sub> NO <sub>3</sub> treatment | 0.75                             | ~1.75 <sup>[c]</sup>            | 1.00                | 23   |
| J. Am. Chem. Soc., 2010         | Mn oxides                                      | electrodeposition                                          | 0.73                             | 1.77                            | 1.04                | 24   |
| Catal. Sci. Technol., 2016      | Mn <sub>2</sub> O <sub>3</sub> nanoballs       | Hydrothermal sysnthesis                                    | 0.67 <sup>[c]</sup>              | 1.81 <sup>[c]</sup>             | 1.24                | 25   |

[a] the value was extimated from the LSV curve.

[b] LSV was perofrmed at 2500 rpm.

[c] these values were extimated from the corresponding LSV curves.

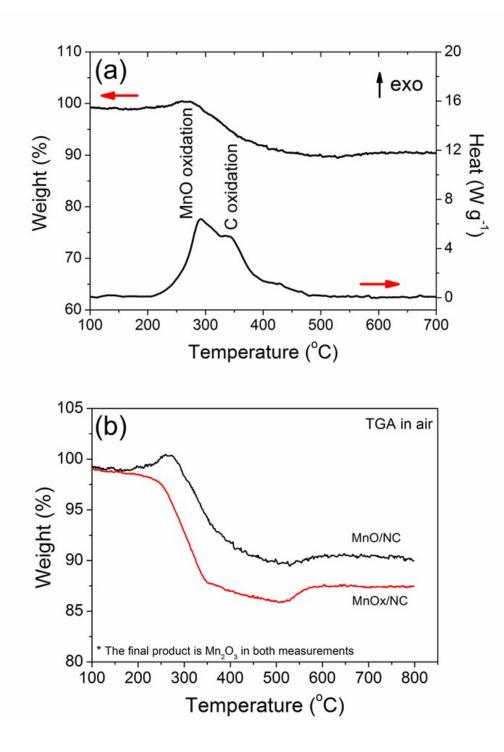



Figure S1. (a) TGA-DSC curve of MnO/NC in air; (b) a comparison of TGA curves for  $MnO_x/NC$  and MnO/NC in air.

The first weight increase associated with a exothermic peak was ascribed to the oxidation of MnO in  $MnO_x$ . Carbon was not oxidized during the 200 °C oxidation treatment.

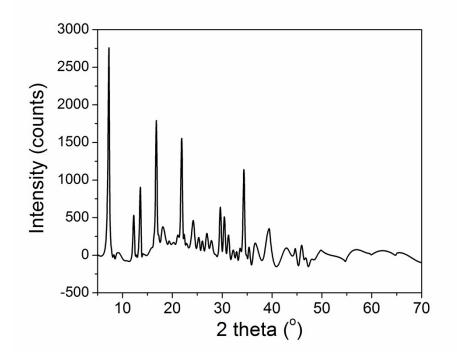



Figure S2. XRD pattern of MnNTA salt before pyrolysis.

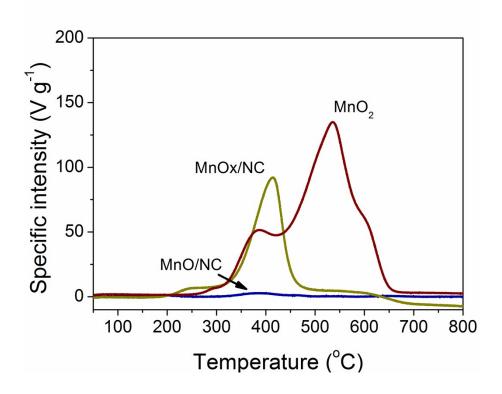



Figure S3. H<sub>2</sub>-TPR spectra of MnO/NC and MnO<sub>x</sub>/NC, commercial MnO<sub>2</sub> was used as a reference. The signal was normalized to the specific intensity (V g<sup>-1</sup>). Here, note that all the manganese oxides were reduced to MnO in 5% H<sub>2</sub> + N<sub>2</sub> at 800 °C.

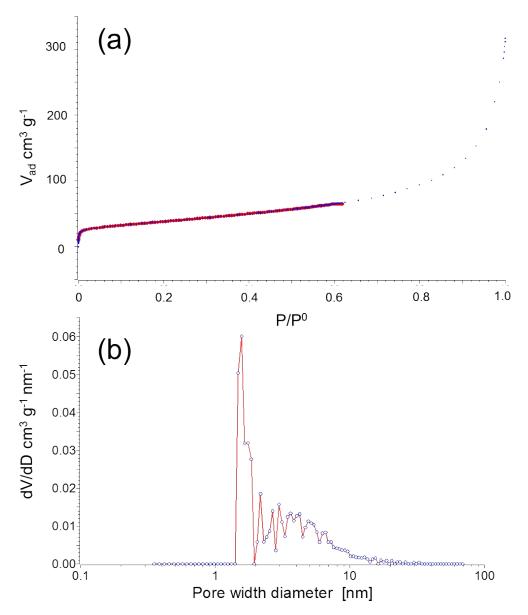



Figure S4. (a) The nitrogen adsorption isotherm of  $MnO_x/NC$  (blue dotted line) and and the simulated isotherm calculated using NLDFT method (red solid line); (b) The pore size distribution calculated using NLDFT method.

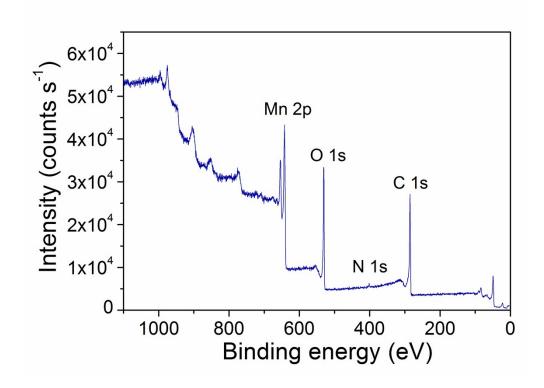



Figure S5. XPS survey spectrum of MnO<sub>x</sub>/NC.

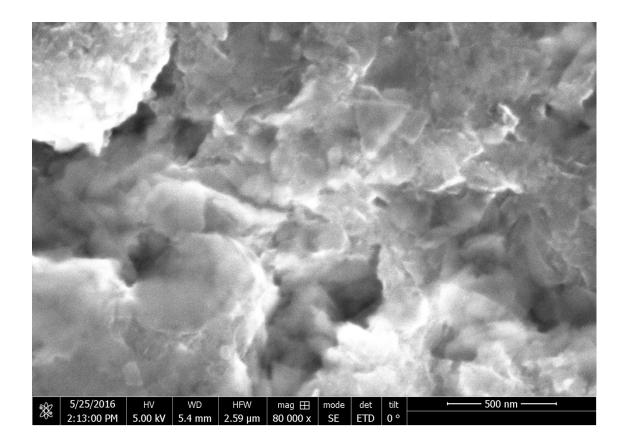



Figure S6. SEM image of the carbon hybrid derived using iron (instead of Mn) NTA salt.

No rod-like structure was seen. Similarly, we have not observed the nanorod structure in Mg based NTA salt (see our previous work in refs. 1 and 2)

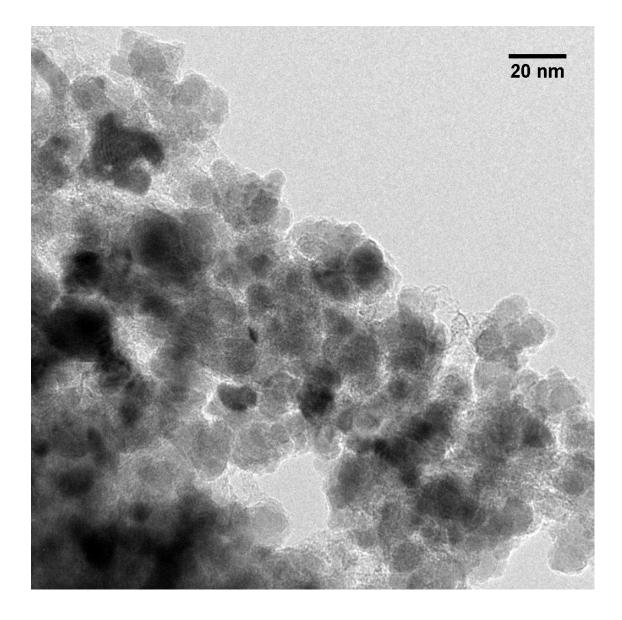



Figure S7. TEM image of the surface of  $MnO_x/NC$ . All manganese oxide nanoparticles were well connected by the 3D carbon network.

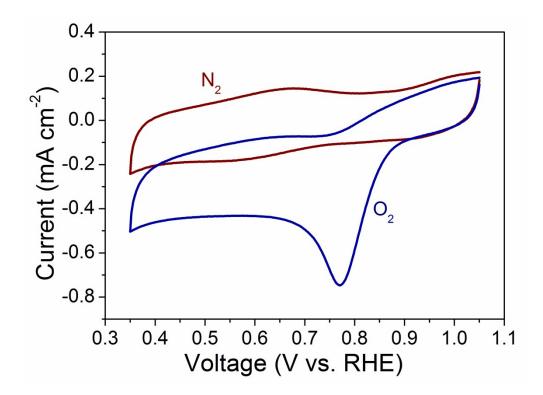



Figure S8. CV plots of MnOx/NC in both oxygen and nitrogen saturated electrolyte. The scan rate was  $10 \text{ mV s}^{-1}$ .

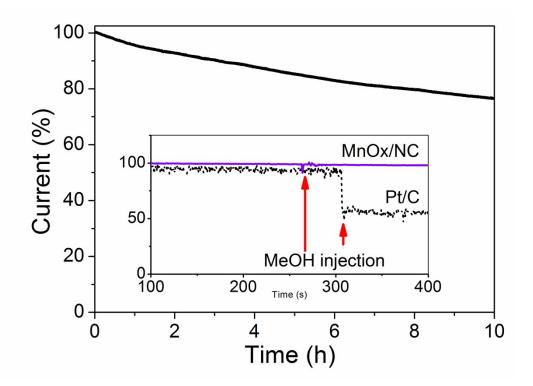



Figure S9. Chronoamperometric stability testing of  $MnO_x/NC$  at a constant voltage of 0.8 V vs. RHE and 600 rpm, while bubbling O<sub>2</sub>; the inset compared current variation of  $MnO_x/NC$  and commercial Pt/C when 20 ml methanol was injected (the final methanol concentration was ~ 3M).

Note that the catalyst shows merely ca. 20 % current loss in the methanol-poisoned electrolyte after 10 h test.

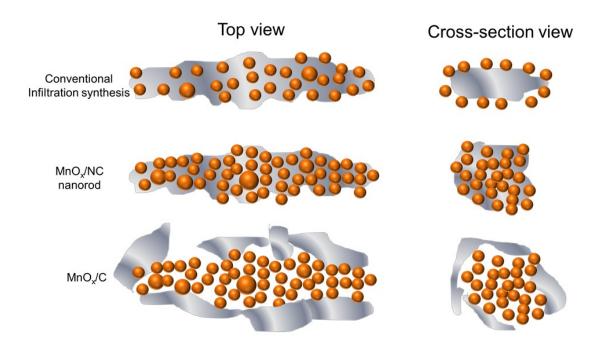



Figure S10. A schematic structural comparison of carbon supported  $MnO_x$  catalyst preparation by the infiltration method,  $MnO_x/NC$  nanorod hybrid and  $MnO_x/C$  (the control).

The conventional carbon supported  $MnO_x$  catalyst preparation by infiltration method indeed demonstrated excellent electrical conductivity. However, the Mn loading is relatively low and the inner park of the carbon sheet is inactive (see the cross-sectional view), both restricting its electrocatalytic potency.

Thanks to the 3D percolated NC network,  $MnO_x/NC$  hybrid owned 80%  $MnO_x$  nanoparticles which were all electrochemically active. Together with the active NC, it demonstrated excellent bifunctional activity.

In the control group ( $MnO_x/C$ ), the high loading did not create more "valid" active sites. This is simply because of the poor electrical conductivity of  $MnO_x$ , which caused the low activity of the inner-part  $MnO_x$ .

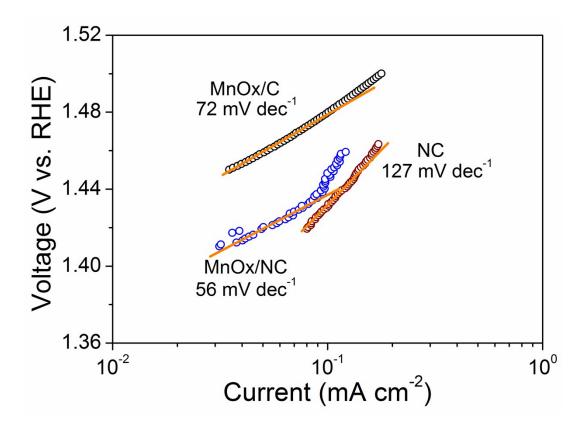



Figure S11. OER Tafel plots of NC,  $MnO_x/C$  and  $MnO_x/NC$  catalysts. All the plots were derived from the corresponding LSV plots at 1600 rpm.

[1] D. Eisenberg, W. Stroek, N. J. Geels, C. S. Sandu, A. Heller, N. Yan, G. Rothenberg, *Chem. Eur. J.*, **2016**, 22, 501-505.

[2] D. Eisenberg, W. Stroek, N.J. Geels, S. Tanase, M. Ferbinteanu, S.J. Teat, P. Mettraux, N. Yan and G. Rothenberg, *Phys. Chem. Chem. Phys.*, **2016**, 18, 20778-20783.

[3] A. J. Bard, L. R. Faulkner, *Electrochemical Methods: Fundamentals and Applications*, John Wiley & Sons, **2001**.

[4] J. R. Pels, F. Kapteijn, J. A. Moulijn, Q. Zhu, K. M. Thomas, *Carbon* 1995, 33,

[5] G. Wu, P. Zelenay, Acc. Chem. Res. 2013, 46, 1878–1889.

[6] P. Q. Yin, T. Yao, Y. Wu, L. R. Zheng, Y. Lin, W. Liu, H. X. Ju, J. F. Zhu, X. Hong, Z. X. Deng, G. Zhou, S. Q. Wei and Y. D. Li, *Angew. Chem. Int. Ed.*, **2016**, 55, 10800-10805.

[7] H. Jin, H. Huang, Y. He, X. Feng, S. Wang, L. Dai, J. Wang, *J. Am. Chem. Soc.*, **2015**, *137*, 7588–7591.

[8] L. J. Dai, M. Liu, Y. Song, J. J. Liu and F. Wang, *Nano Energy*, 2016, 27, 185-195.

[9] B. Hua, Y. Q. Zhang, N. Yan, M. Li, Y. F. Sun, J. Chen, J. Li and J. L. Luo, *Adv. Funct. Mat.*, **2016**, 26, 4106-4112.

[10] J. Tang, J. Liu, C. Li, Y. Li, M. O. Tade, S. Dai, Y. Yamauchi, *Angew. Chem. Int. Ed.*, **2015**, 588–593.

[11] Z. Y. Lu, W. W. Xu, J. Ma, Y. J. Li, X. M. Sun and L. Jiang, *Adv. Mat.*, **2016**, 28, 7155-7161.

[12] C. Li, X. Han, F. Cheng, Y. Hu, C. Chen and J. Chen, *Nat. Commun.*, **2015**, 6, 7345.

[13] C. Hu, C. Yu, M. Li, X. Wang, Q. Dong, G. Wang, J. Qiu, *Chem. Commun.*, **2015**, *51*, 3419–3422.

[14] S. Lee, G. Nam, J. Sun, J. S. Lee, H. W. Lee, W. Chen, J. Cho and Y. Cui, *Angew. Chem. Int. Ed.*, **2016**, 55, 8599-8604.

[15] X. Cui, Z. Hua, L. Chen, X. Zhang, H. Chen and J. Shi, *ChemSusChem*, **2016**, 9, 1010-1019.

[16] A. Aijaz, J. Masa, C. Rosler, W. Xia, P. Weide, A. J. R. Botz, R. A. Fischer, W. Schuhmann and M. Muhler, *Angew. Chem. Int. Ed.*, **2016**, 55, 4087-4091.

[17] S. Dou, L. Tao, J. Huo, S. Y. Wang and L. M. Dai, *Energ. Environ. Sci.*, **2016**, 9, 1320-1326.

[18] Y. T. Meng, W. Q. Song, H. Huang, Z. Ren, S. Y. Chen and S. L. Suib, *J. Am. Chem. Soc.*, **2014**, 136, 11452-11464.

[19] S. Gadipelli, T. Zhao, S. A. Shevlin and Z. Guo, *Energ. Environ. Sci.*, **2016**, 9, 1661-1667.

[20] A. Indra, P. W. Menezes, N. R. Sahraie, A. Bergmann, C. Das, M. Tallarida, D. Schmeisser, P. Strasser and M. Driess, *J. Am. Chem. Soc.*, **2014**, 136, 17530-17536.

[21] J. Masa, W. Xia, I. Sinev, A. Q. Zhao, Z. Y. Sun, S. Grutzke, P. Weide, M. Muhler and W. Schuhmann, *Angew. Chem. Int. Ed.*, **2014**, 53, 8508-8512.

[22] T. N. Lambert, J. A. Vigil, S. E. White, D. J. Davis, S. J. Limmer, P. D. Burton,
E. N. Coker, T. E. Beechem and M. T. Brumbach, *Chem. Commun.*, 2015, 51, 9511-9514.

[23] A. Pendashteh, J. Palma, M. Anderson and R. Marcilla, *Appl. Catal. B*, **2017**, 201, 241-252.

[24] Y. Gorlin and T. F. Jaramillo, J. Am. Chem. Soc., 2010, 132, 13612-13614.

[25] S. Ghosh, P. Kar, N. Bhandary, S. Basu, S. Sardar, T. Maiyalagan, D. Majumdar,

S. K. Bhattacharya, A. Bhaumik, P. Lemmens and S. K. Pal, *Catal. Sci. Tech.*, **2016**, 6, 1417-1429.