Extended Supplementary Information for:

Bifunctional Lewis and Brønsted acidic zeolites permit the continuous production of bio-renewable furanic ethers

D. Padovan, A. Al-Nayili and C. Hammond

Cardiff Catalysis Institute, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT

hammondc4@cardiff.ac.uk

Table S1. Metal content and porosity data for various aluminosilicate and stannosilicate materials. Al content determined by ICP-MS, Sn content determined by EDX spectroscopy and porosity data determined by N2 isotherms; Brunauer-Emmett-Teller surface area (S_{BET}) calculated from BET method, and micropore volume (V_{micro}) derived from the t-plot method

Entry	Catalyst	Al wt. %	Sn wt. %	${}^{a}S_{BET} (m^{2} g^{-1})$	V_{micro} (cm ³ g ⁻¹)
1	H-Beta-38	2.30	-	551	0.210
2	deAl-Beta-38	< 0.05	-	596	0.221
3	2Sn-Beta	< 0.05	1.7	563	0.191
4	10Sn-Beta	< 0.05	9.4	525	0.193

Figure S1. XRD analysis of different aluminosilicate and stannosilicate catalysts, including (from top to bottom) zeolite H-Beta ($SiO_2/Al_2O_3 = 38$), dealuminated zeolite beta, 2Sn-Beta and 10Sn-Beta.

Figure S2. FTIR analysis of $2Sn-\beta$ and $10Sn-\beta$ following outgassing at 550 °C. The intensities are normalised to the Si-O-Si absorbances, so that the relative intensities of the OH region bands can be compared.

Figure S3. Conversion of FA to BMF as a function of time using H-Beta (300) at different mass loading. Initial TOF is displayed for the two different loadings.

Figure S4. BMF selectivity as a function of FA conversion for H-Beta 300 and sulfuric acid.

Figure S5. XRD patterns of zeolites treated at different conditions. The dealumination time and concentration are in parentheses. From top to bottom: 2Sn-Beta-38 (13M, 10h), DeAl-Beta-38 (13M, 10h), 2Sn-Beta-38 (13M, 1h), DeAl-Beta-38 (13M, 1h) and SnO₂.

Figure S6. Thermogravimetry analysis of different used catalysts compared against a fresh sample: a) 2Sn(1h) fresh, b) 2Sn(1h) used after FF MPV/etherification, c) physical mixture used after FF MPV/etherification and d) H-Beta 300 used after FA etherification only.

Figure S7. ²⁷Al MAS NMR spectrum of [2Sn, 0.5Al]-β.

Table S2. Porosity data of various fresh, used and regenerated alumino- and stanno-silicate catalysts. Brunauer-Emmett-Teller surface area (S_{BET}) calculated from BET method, and micropore volume (V_{micro}) derived from the t-plot method. Values in italic and underlined correspond to measurements made on used (*i.e. ex reactor*) and regenerated catalyst mixtures, respectively.

Catalyst	$^{a}S_{BET} (m^{2} g^{-1})$	V _{micro} (cm ³ g ⁻¹)
AI-BEA-38	550.38	0.247
[2Sn,0.5Al]-β undiluted	560.716	0.245
$\begin{array}{ll} \mbox{[2Sn,0.5Al]-}\beta\ (1:4 & by \\ \mbox{weight physical mixture} \\ \mbox{with SiC} \end{array}$	<i>53.432</i> (after reaction) <u>93.482</u> (after reaction + regeneration)	0.022 (after reaction) 0.043(after reaction + regeneration)

Figure S8. XRD of different fresh and used zeolite catalysts (20 wt. %) mixed with SiC (80 wt%.). From bottom to top: a) 2Sn(1h)-Beta fresh, b) 2Sn(1h)-Beta used, c) 2Sn(10h)-Beta fresh, d) 2Sn(10h)-Beta used, e) 2Sn(20h)+H-Beta fresh, f) 2Sn(20h)+H-Beta used, g) 2Sn-0.5Al-Beta fresh and h) 2Sn-0.5Al-Beta used.