Supporting Information

Guidelines to Design Electrolytes for Lithium-ion Batteries: Environmental impact, Physicochemical and Electrochemical Properties

Benjamin Flamme,^a Gonzalo Rodriguez Garcia,^{b†} Marcel Weil,^{c†} Mansour Haddad,^a

Phannarath Phansavath,^a Virginie Ratovelomanana-Vidal,^a Alexandre Chagnes^d

- a) PSL Research University, Chimie ParisTech CNRS, Institut de Recherche de Chimie Paris, 11 rue Pierre et Marie Curie, 75005, Paris, France
- b) Helmholtz Institute Ulm (HIU) Electrochemical Energy Storage, Helmholtzstraße 11, 89081 Ulm, Germany.

Current address: Helmholtz Zentrum Dresden Rossendorf (HZDR) Bautzner Landstraße 400, 01328 Dresden, Germany

- c) Institute for Technology Assessment and System Analysis (ITAS), Karlstraße 11, 76133 Karlsruhe, Germany.
- d) University of Lorraine, GeoRessources Lab, UMR CNRS 7359, 2 Rue Doyen Marcel Roubault, TSA 70605, 54518 Vandoeuvre Les Nancy, France.

† Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021 Karlsruhe, Germany

<u>alexandre.chagnes@univ-lorraine.fr</u> for discussion about the physicochemistry and electrochemistry in lithium-ion batteries

g.rodriguez@hzdr.de for discussion about Life Cycle Assessment

Acronyms

Acronyms	Usual name	IUPAC name
1,3-DL	Dioxolane	1,3-dioxolane
2FEA	Fluoroethyl acetate 2-fluoroethyl acetate	
2FEP	Fluoroethyl propionate	2-fluoroethyl propionate
2FPMC	2-fluoropropyl methyl carbonate	2-fluoropropyl methyl carbonate
2Me-1,3-DL	2-methyl dioxolane	2-methyl-1,3-dioxolane
2Me-THF	Methyltetrahydrofuran	2-methyltetrahydrofuran
3Me-SL	3-methylsulfolane	3-methyltetrahydrothiophene 1,1-dioxide
4Me-1,3-DL	4-methyl dioxolane	4-methyl-1,3-dioxolane
А	Average	
ALOP	Agricultural land occupation potential	
APOS	Allocation at the point of substitution	
BC	1,2-butylene carbonate	4-ethyl-1,3-dioxolan-2-one
CH₃CI	Methyl chloride	Chloromethane
CIMB	Chloromethyl butyrate	Chloromethyl butyrate
сР	Centipoise (mPa.s)	
DEC	Diethyl carbonate	Diethyl carbonate
DEE	Diethoxyethane	1,2-diethoxyethane
DES	Diethyl sulfite	Diethyl sulfite
DFEMC	Difluoroethyl methyl carbonate	2,2-difluoroethyl methyl carbonate
DFEME	Difluoroethoxy methoxy ethane	1,1-difluoro-2-(2-methoxyethoxy)ethane
DMC	Dimethyl carbonate	Dimethyl carbonate
DME	Dimethoxyethane	1,2-dimethoxyethane
DMM	Dimethoxymethane	Dimethoxymethane
DMS	Dimethyl sulfite	Dimethyl sulfite
DMSO	Dimethyl sulfoxide	(methylsulfinyl)methane
DPS	Dipropyl sulfone	1-(propylsulfonyl)propane
DSC	Differential scanning calorimetry	
DVL	δ-valerolactone	Tetrahydro-2H-pyran-2-one
EA	Ethyl acetate	Ethyl acetate
EB	Ethyl butyrate	Ethyl butyrate
EC	Ethylene carbonate	1,3-dioxolan-2-one
ED	Damage to ecosystems diversity	
EDFA	Ethyl difluoroacetate	Ethyl 2,2-difluoroacetate
EDFEC	Ethyl difluoroethyl carbonate	2,2-difluoroethyl ethyl carbonate
EDFEE	Ethoxy difluoroethoxy ethane	2-(2-ethoxyethoxy)-1,1-difluoroethane
EFA	Ethyl fluoroacetate	Ethyl 2-fluoroacetate
EFEC	Ethyl fluoroethyl carbonate	Ethyl (2-fluoroethyl) carbonate
EFEE	Ethoxy fluoroethoxy ethane	1-ethoxy-2-(2-fluoroethoxy)ethane
EG	Ethylene glycol	ethane-1,2-diol)

EGME	Ethylene gycol monomethyl ether	2-Methoxyethanol
EiBS	Ethyl isobutyl sulfone	1-(ethylsulfonyl)-2-methylpropane
EiPC	Ethyl isopropyl carbonate	Ethyl isopropyl carbonate
EiPS	Ethyl isopropyl sulfone 2-(ethylsulfonyl)propane	
EMC	Ethyl methyl carbonate	Ethyl methyl carbonate
EME	Ethoxy methoxy ethane	1-ethoxy-2-methoxyethane
EMEES	Ethyl methoxyethoxyethyl sulfone	1-(ethylsulfonyl)-2-(2- methoxyethoxy)ethane
EMES	Ethyl methoxyethyl sulfone	1-methoxy-2-(ethylsulfonyl)ethane
EMS	Ethyl methyl sulfone	(methylsulfonyl)ethane
EO	Ethylene oxide	Oxirane
Eox	Oxidation Potential	
EPC	Ethyl propyl carbonate	Ethyl propyl carbonate
EPE	Ethyl propyl ether	1-ethoxypropane
ES	Ethylene sulfite	1,3,2-dioxathiolane 2-oxide
EsBS	Ethyl secbutyl sulfone	2-(ethylsulfonyl)butane
ESCP	Ethyl cyclopentyl sulfone	(ethylsulfonyl)cyclopentane
EtBr	Ethyl bromide	Bromoethane
ETFEC	Ethyl trifluoroethyl carbonate	Ethyl (2,2,2-trifluoroethyl) carbonate
ETFEE	Ethoxy trifluoroethoxy ethane	2-(2-ethoxyethoxy)-1,1,1-trifluoroethane
EtSH	Ethyl mercaptan	Ethanethiol
EVS	Ethyl vinyl sulfone	(ethylsulfonyl)ethene
FDP	Fossil depletion potential	
FEC	Fluoroethylene carbonate	4-fluoro-1,3-dioxolan-2-one
FEME	Fluoroethoxy methoxy ethane	1-fluoro-2-(2-methoxyethoxy)ethane
FEP	Freshwater eutrophication potential	
FETP	Freshwater ecotoxicity potential	
FGBL	Fluoro-y-butyrolactone	3-fluorodihydrofuran-2(3H)-one
FMS	Fluoro methyl sulfone	Methanesulfonyl fluoride
FPC	Fluoropropylene carbonate	4-(fluoromethyl)-1,3-dioxolan-2-one
FPMC	Fluoropropyl methyl carbonate	3-fluoropropyl methyl carbonate
FPMS	Trifluoropropyl methyl sulfone	1,1,1-trifluoro-3-(methylsulfonyl)propane
FS	Fluorophenyl methyl sulfone	1-fluoro-2-(methylsulfonyl)benzene
GBL	γ-butyrolactone	dihydrofuran-2(3H)-one
GC	Glassy Carbon	, , ,
GWP	Global warming potential	
н	Hierarchist	
НН	Damage to human health	
НТР	Humantoxicity potential	
iPMS	Isopropyl methyl sulfone	2-(methylsulfonyl)propane
LiBs	Lithium-Ion Batteries	
LCA	Life Cvcle Assessment	
LCI	Life Cycle Inventory	
LCIA	Life Cycle Impact Assessment	
LiAsFe	Lithium hexafluoroarsenate(V)	Lithium hexafluoroarsenate(V)
LiBF₄	Lithium tetrafluoroborate	Lithium tetrafluoroborate
· • •		

LiCl	Lithium chloride	Lithium chloride
LiC(SO ₂ CF ₃) ₃	Li Methide	Lithium tris(trifluoromethanesulfonyl)methide
LFP	Lithium iron phosphate	institutionethanesunonylymethide
LMO	Lithium ion manganese oxide	
LiPFe	Lithium hexafluorophosphate	Lithium hexafluorophosphate
LPG	Liquefied Petroleum Gas	
LiTf	Lithium triflate	Lithium trifluoromethanesulfonate
Litfsi	Lithium bis((trifluoromethyl)sulfonyl)amide	Lithium bis((trifluoromethyl)sulfonyl)amide
MA	Methyl Acetate	Methyl acetate
MAN	Maleic Anhydride	Furan-2,5-dione
MB	Methyl butyrate	
MCA	Methyl cyanoacetate	Methyl 2-cyanoacetate
MDP	Mineral depletion potential	
MEMS	Methoxyethyl methyl sulfone	1-methoxy-2-(methylsulfonyl)ethane
MEP	Marine eutrophication potential	
MeSH	Methyl mercaptan	Methanethiol
METP	Marine ecotoxicity potential	
MFDMC	Monofluorodimethyl carbonate	Fluoromethyl methyl carbonate
MFEMC	Monofluoroethyl methyl carbonate	2-fluoroethyl methyl carbonate
MiPC	Methyl isopropyl carbonate	Isopropyl methyl carbonate
ММОА	Methyl methoxy acetate	Methyl 2-methoxyacetate
MPA	Methoxypropyl acetate	1-methoxypropan-2-yl acetate
MPC	Methyl propyl carbonate	Methyl propyl carbonate
MTS	Methyl trimethylene sulfone	2-methylthietane 1.1-dioxide
MS	Dimethyl sulfone	(methylsulfonyl)methane
NLTP	Natural land transformation potential	
NCA	Nickel-Cobalt-Aluminum	
NMC	Lithium Nickel Manganese Cobalt Oxide	
ODP	Ozone depletion potential	
PC	Propylene carbonate	4-methyl-1.3-dioxolan-2-one
PFPMC	Pentafluoropropyl methyl carbonate	Methyl (2,2,3,3,3-pentafluoropropyl) carbonate
PMFP	Particle matter formation potential	
POFP	Photochemical oxidant formation potential	
PS	Propylene sulfite	4-methyl-1,3,2-dioxathiolane 2-oxide
RA	Damage to resource availability	
SL	Sulfolane	Tetrahydrothiophene 1,1-dioxide
ТАР	Terrestrial acidification potential	
TeFPMC	Tetrafluoropropyl methyl carbonate	Methyl (2,2,3,3-tetrafluoropropyl) carbonate
TETP	Terrestrial ecotoxicity potential	
TFEMC	Trifluoroethyl methyl carbonate	Methyl (2,2,2-trifluoroethyl) carbonate
TFEME	Trifluoroethoxy methoxy ethane	1,1,1-trifluoro-2-(2-methoxyethoxy)ethane
THF	Tetrahydrofuran	Tetrahydrofuran
TMS	Tetramethylene sulfone	Tetrahydrothiophene 1,1-dioxide
TrFPMC	Trifluoropropyl methyl carbonate	Methyl (3,3,3-trifluoropropyl) carbonate

ULOP	Urban land occupation potential	
V	Volt	
VC	Vinylcarbonate	1,3-dioxol-2-one
VEC	Vinyl ethylene carbonate	4-vinyl-1,3-dioxolan-2-one

Contents

1.	Synthesis	s of MPA, MEMS and EMEES9
1.	1. Prod	cedures9
	1.1.1.	MPA (2)9
	1.1.2.	MEMS (5)9
	1.1.3.	EMEES (9)
1.	2. Spe	ctra11
	1.2.1.	MPA (2)11
	1.2.2.	MEMS (5)
	1.2.3.	EMEES (9)15
2.	Introduct	tion to LCA17
2.	1. Prod	duction of a generic solvent17
	2.1.1.	Infrastructure19
	2.1.2.	Raw materials and auxiliaries19
	2.1.3.	Energy19
	2.1.4.	Transportation19
	2.1.5.	Emissions to air19
	2.1.6.	Emissions to water19
	2.1.7.	Life Cycle Inventory
3.	Producti	on of GBL21
3.	1. Rep	pe process21
3.	2. Mal	eic anhydride pathway21
	3.2.1.	Infrastructure21
	3.2.2.	Raw materials and auxiliaries21
	3.2.3.	Energy21
	3.2.4.	Transportation22
	3.2.5.	Emissions to air22
	3.2.6.	Emissions to water22
	3.2.7.	Life Cycle Inventory22
4.	Producti	on of THF23

4.1.	Rep	pe process	.23
4.2.	Mal	eic anhydride pathway	.23
4	.2.1.	Infrastructure	.23
4	.2.2.	Raw materials and auxiliaries	.23
4	.2.3.	Energy	.23
4	.2.4.	Transportation	.23
4	.2.5.	Emissions to air	.23
4	.2.6.	Emissions to water	.24
4	.2.7.	Life Cycle Inventory	.24
4.3.	Mits	subishi Acetoxylation	.25
4	.3.1.	Infrastructure	.26
4	.3.2.	Raw materials and auxiliaries	.26
4	.3.3.	Energy	.26
4	.3.4.	Transportation	.26
4	.3.5.	Emissions to air	.26
4	.3.6.	Emissions to water	.26
4	.3.7.	Life Cycle Inventory	.27
5. P	roducti	ion of DME	.27
5.1.	Clea	avage of ethylene oxide in presence of dimethyl ether	.27
5.2.	DOV	N process	.28
5.3.	She	ll Omega process	.28
5	.3.1.	Infrastructure	.29
5	.3.2.	Raw materials and auxiliaries	.29
5	.3.3.	Energy	.29
5	.3.4.	Transportation	.29
5	.3.5.	Emissions to air	.29
5	.3.6.	Emissions to water	.29
5	.3.7.	Life Cycle Inventory	.29
5.4.	Hyd	lration/coupling pathway	.31
5	.4.1.	Infrastructure	.31
5	.4.2.	Raw materials and auxiliaries	.31
5	.4.3.	Energy	.31
5	.4.4.	Transportation	.31
5	.4.5.	Emissions to air	.31
			6

	5.4.6.	Emissions to water	2
	5.4.7.	Life Cycle Inventory	2
6.	Product	ion of Sulfolane34	1
6	5.1. Hyd	drogenation of sulfolene34	1
	6.1.1.	Infrastructure	1
	6.1.2.	Raw materials and auxiliaries34	1
	6.1.3.	Energy34	1
	6.1.4.	Transportation	1
	6.1.5.	Emissions to air	1
	6.1.6.	Emissions to water	5
	6.1.7.	Life Cycle Inventory	5
7.	Product	ion of EMS	ŝ
7	'.1. Fro	m methanethiol and bromoethane36	ŝ
	7.1.1.	Infrastructure	7
	7.1.2.	Raw materials and auxiliaries37	7
	7.1.3.	Energy	7
	7.1.4.	Transportation	7
	7.1.5.	Emissions to air	3
	7.1.6.	Emissions to water	3
	7.1.7.	Life Cycle Inventory	3
7	'.2. Fro	m ethanethiol and chloromethane41	l
	7.2.1.	Infrastructure41	l
	7.2.2.	Raw materials and auxiliaries41	1
	7.2.3.	Energy41	1
	7.2.4.	Transportation42	2
	7.2.5.	Emissions to air42	2
	7.2.6.	Emissions to water42	2
	7.2.7.	Life Cycle Inventory42	2
8.	Product	ion of DMC43	3
8	8.1. She	ell Omega process and methanol coupling43	3
	8.1.1.	Infrastructure	3
	8.1.2.	Raw materials and auxiliaries43	3
	8.1.3.	Energy43	3
	8.1.4.	Transportation43	3
		-	7

8.1.5.	Emissions to air44
8.1.6.	Emissions to water44
8.1.7.	Life Cycle Inventory44
9. Produc	tion of EA45
9.1. Fi	scher esterification45
9.2. De	hydrogenation of ethanol45
9.2.1.	Infrastructure45
9.2.2.	Raw materials and auxiliaries45
9.2.3.	Energy45
9.2.4.	Transportation45
9.2.5.	Emissions to air45
9.2.6.	Emissions to water45
9.2.7.	Life Cycle Inventory46
9.3. Av	ada process46
9.3.1.	Infrastructure
9.3.2.	Raw materials and auxiliaries47
9.3.3.	Energy47
9.3.4.	Transportation47
9.3.5.	Emissions to air47
9.3.6.	Emissions to water47
9.3.7.	Life Cycle Inventory47
9.4. 03	idation of butane
References	
10. Addi	tional LCIA results

1. Synthesis of MPA, MEMS and EMEES

1.1. Procedures

1.1.1. MPA (2) [1]

1-methoxy-2-propanol **1** (10 mL, 0.102 mol) was introduced in a three-neck flask equipped with a condenser, a thermometer and an addition funnel. The system was placed under argon atmosphere, and acetic anhydride (52.2 mL, 0.55 mol) was added dropwise at a temperature of 50 °C. After the addition was complete, the solution was heated to 150 °C for 16 h (TLC using cyclohexane/ethyl acetate as eluent indicated a completion of the reaction). The solution was cooled to 0 °C and neutralized with a saturated solution of NaHCO₃. The mixture was extracted with Et_2O (3x), and the combined organic layers were dried over Na₂SO₄, filtered, and the solvent evaporated under reduced pressure to provide a crude product which was purified by distillation (Eb= 144-147 °C at atmospheric pressure) to furnish 10.15 g of **2** (75%) as a colorless liquid.

R_f (cyclohexane/ethyl acetate; 6/4): 0.68

¹**H NMR** (300 MHz, CDCl₃) δ: 5.12 – 5.00 (m, 1H), 3.49 – 3.37 (m, 2H), 3.36 (s, 3H), 2.05 (s, 3H), 1.22 (d, *J* = 6.5 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃) δ: 171.14, 75.61, 69.83, 59.68, 21.83, 17.11.

GC-MS RT: 7.04min, *m*/*z* 133.06 [MH⁺], 150.07 [MNH₄⁺]

1.1.2. MEMS (5) [2],[4]

To 4.6 g of NaH (0.115 mol), 60 % dispersion in oil and previously washed with pentane) in dry THF (50 mL) and cooled to 0 °C, was added dropwise β -mercaptoethanol **3** (2.7 mL, 0.0384 mol) diluted in THF (10 mL). The mixture was stirred for 30 min at this temperature, and iodomethane (6.22 mL, 0.1 mol) was then added carefully. The solution was stirred for an additional 1 h (TLC indicated the completion of the reaction). The mixture was hydrolyzed with water and extracted twice with CH₂Cl₂. The combined organic phases were washed with brine, dried over Na₂SO₄, filtered, and the solvent evaporated under vacuum to afford 4.69 g of crude yellow liquid **4** which was used without purification.

To a three-neck flask equipped with a thermometer, a condenser, and an addition funnel containing a solution of 35 % w/w H_2O_2 (6.6 mL, 0.077 mol) cooled to 0 °C (ice bath), was added under argon crude **4** (4.69 g) in a way to maintain the temperature below 30 °C. The ice bath was removed and the solution was heated at 75 °C for 16 h. The reaction mixture was concentrated by evaporation under vacuum to provide crude **5** (5.1 g) which was purified by column chromatography (cyclohexane/ethyl acetate; from 7/3 to 5/5) to provide pure **5** (2.6 g, 49 %) as a colorless oil.

R_f (cyclohexane/ethyl acetate; 6/4): 0.25

¹**H NMR** (300 MHz, CDCl₃) δ: 3.82 – 3.74 (m, 1H), 3.36 (d, *J* = 0.7 Hz, 1H), 3.22 – 3.16 (m, 1H), 2.95 (dd, *J* = 1.4, 0.8 Hz, 1H).

¹³**C NMR** (75 MHz, CDCl₃) δ: 66.51, 59.29, 55.44, 43.32.

1.1.3. EMEES (9) [3],[4]

To a two-neck flask equipped with a condenser and an addition funnel, was introduced a CHCl₃ solution (10 mL) of diglyme monomethyl ether **6** (3.91 mL, 0.033 mol) and pyridine (2.69 mL, 0.033 mol). The system was placed under argon, and a solution of $SOCl_2$ (3.12 mL, 0.042 mol) in CHCl₃ (10 mL) was added slowly at r.t.. The reaction was heated at 65°C for 3.5 h when TLC (cyclohexane/ethyl acetate; 6/4) indicated the end of the reaction. The reaction mixture was cooled with an ice bath and quenched slowly with water. The organic layer was washed with water, dried over Na₂SO₄ filtered and concentrated by evaporation under reduced pressure to provide 6.37 g of crude pale yellow liquid **7**, which was used without purification in the next step (¹H NMR spectra revealed only traces of impurities).

In a two-neck round-bottom flask containing 15 mL of dry methanol, was added sodium (644 mg, 0.028 mol) and the system was flushed with argon. After complete consumption of sodium, ethanethiol (2.07 mL, 0.028mol) was introduced and the solution was stirred for 2h at room temperature. Crude **7** (3.9 g, 0.028mol) dissolved in 10 mL of dry methanol was added to the reaction mixture. The flask was equipped with a condenser, and the solution was heated at 75°C for 2h and checked by TLC (cyclohexane/ethyl acetate; 8/2). At the end of the reaction, the mixture was evaporated, filtered, rinsed with EtOAc, and the filtrate was concentrated under reduced pressure to afford 4.33g of crude **8** which was pure enough to be used without purification in the next step.

Crude **8** (4.3 g, 0.025 mol) was introduced in a three-neck round-bottom flask equipped with a condenser, a thermometer and an addition funnel containing concentrated H_2O_2 (35% w/w, 4.3 mL, 0.05 mol). The system was flushed with argon and cooled to 0°C with an ice bath. Then a very slow addition of concentrated H_2O_2 was performed to maintain the temperature below 30°C. The ice bath was then removed and the reaction was heated at 75°C overnight. After 16h the reaction was checked by TLC (cyclohexane/ethyl acetate; 5/5), the reaction mixture was concentrated by evaporation under reduced pressure to afford 4.3 g of crude **9**. The product was purified by column chromatography (cyclohexane/ethyl acetate; from 5/5 to pure EtOAc) to afford 2.44 g (58%) of **9** as a colorless oil.

R_f (cyclohexane/ethyl acetate; 5/5): 0.34

¹**H NMR** (300 MHz, CDCl₃) δ : 3.92 – 3.82 (m, 1H), 3.62 – 3.56 (m, 1H), 3.52 – 3.45 (m, 1H), 3.32 (dd, *J* = 1.9, 1.3 Hz, 1H), 3.16 (t, *J* = 5.2 Hz, 1H), 3.09 (q, *J* = 7.5 Hz, 1H), 1.34 (ddd, *J* = 7.4, 1.9, 1.4 Hz, 3H).

¹³**C NMR** (75 MHz, CDCl₃) δ: 72.01, 70.99, 65.23, 59.38, 53.06, 49.60, 6.88.

GC-MS RT: 13.82min, m/z 214.14 [MNH₄⁺]

References:

[1] W. J. Bailey, L. Nicholas, J. Org.Chem., 1956, 21, 648.

[2] T. Takeda, H. Furukawa, M. Fujimori, K. Suzuki, T. Fujiwara, Bull. Chem. Soc. Jpn., 1984, 57, 1863.

[3] X.-G. Sun, C. A. Angell, *Electrochem. Commun.*, 2005, **7**, 261.

[4] M. Jereb, Green Chem., 2012, 14, 3047.

1.2. Spectra

1.2.1. MPA (2)

1.2.2. MEMS (5)

14

1.2.3. EMEES (9)

16

2. Introduction to LCA

The objective of this work is to develop Life Cycle Inventories (LCI) for a number of solvents used in lithium-ion batteries as electrolytes. For most solvents, several production routes have been evaluated. The LCI of some of these electrolytes are already included in Ecoinvent (Table 1) or in LCA literature. [1,2]

		Route	LCI in Ecoinvent 3.2.	LCI in literature	Original LCI
ates	Dimethyl carbonate (DMC)	Shell Omega process		1	1
Carbon	Ethylene carbonate (EC)	From ethylene oxide and CO ₂	1		
		Fischer esterification	1		
	Ethyl agotata (EA)	Dehydrogenation pathway			1
s	Ethyl acetate (EA)	Avada process			1
ster:		Butane oxidation	1		
ů		Reppe process	1		
	γ-butyrolactone (GBL)	Maleic anhydride pathway			1
	Dimethoxyethane (DME)	Cleavage of ethylene oxide in presence of dimethyl ether	1		
		DOW process			1
rs		Shell Omega process			1
Ethe		Hydration/coupling pathway			1
I	Tetrahydrofuran (THF)	Reppe process	1		
		Hydrogenation of maleic anhydride			1
		Mitsubishi acetoxylation			1
nes	Sulfolane (SL)	Hydrogenation of sulfolene			1
ulfo	Ethyl methyl	From methanethiol and bromoethane			1
S	sulfone (EMS)	From ethanethiol and chloromethane			1

Table 1Solvents and their production routes.

Most of the solvent production processes described in Ecoinvent are based on generic data. For instance, flows like energy used or transport of reactants are based on average data for the production of organic chemicals. In order to be consistent with these inventories, we have used generic data when we could not find specific information about the process. Thus, we first describe the LCI of the production process of a generic solvent. Unless stated otherwise, the values presented here will be used for the development of new LCI.

2.1. Production of a generic solvent

The production process of a generic solvent is based on the production processes for GBL, THF, DME and EA described in Ecoinvent [1] and illustrated in Figure 1. In the subsequent description, names in *italics* correspond to Ecoinvent flows.

Figure 1Production process of a generic solvent, based on [1]

We assume a conversion rate of 95% and a selectivity of 100% for a molar yield of 95%. 0.2% of the reagents are supposed to be emitted to air, and 4.8% to the wastewater, which is subsequently treated in a wastewater treatment plant (WWTP) with a removal efficiency of 90% (Table 2). These values are common in a number of Ecoinvent processes for the production of solvents and other organic substances.

Table 2 Process information	n for the produc	tion of a gene	eric solvent
-----------------------------	------------------	----------------	--------------

Conversion	95%
Reagent to air	0.2%
Reagent to WWT	4.8%
Removal efficiency of the WWTP	90%

We considered reagent recycling as part of the production process and thus, we did not modelled explicitly. The conversion rate presented in Table 2 and subsequent conversions are not necessarily the rates of a one-step reaction, but the overall conversion efficiency of a process that might include several stages with or without recirculation.

For processes with a different conversion, the fraction of reagents entering the WWTP can be calculated as follow:

$$Reagent to WWTP = 100\% - Conversion - Reagent to air$$

If the reagent is a gas, we assume that the non-reacting fraction is completely emitted to air. Such assumption is consistent with Ecoinvent inventories where no specific information on emissions was available e.g. fate of hydrogen during Butene hydroformylation[1].

2.1.1. Infrastructure

The default plant for the production of solvents in Ecoinvent, *chemical factory, organics – GLO,* has an average output of 50,000 tons end product/year and a lifespan of 50 years. Thus, we assumed 4.00E-10 plants (units) per kg of solvent produced.

2.1.2. Raw materials and auxiliaries

The amount of reagents required is function of the conversion, the selectivity rates and stoichiometry of the reaction as well as of the molecular weights of the compounds involved. For the production of 1kg of solvent and related products, 24 kg of *Water, cooling, unspecified origin* are used.

2.1.3. Energy

The default Ecoinvent plant requires 3.2 MJ/kg product split into 50% natural gas, 38% electricity and 12% steam from external sources, which is also assumed to come from natural gas. Since we assumed the plant to be located in the EU—without specifying the state— it requires 2 MJ of *heat*, *district or industrial, natural gas | heat production, natural gas, at industrial furnace > 100kW – Europe without Switzerland and 0.33 kWh of electricity, medium voltage | market group for electricity – Europe without Switzerland.*

2.1.4. Transportation

We used the standard distances of 100 km for *transport, freight, lorry, unspecified* and 600 km for *transport, freight train – Europe without Switzerland* for those reagents not coming from a market activity¹.

2.1.5. Emissions to air

As already mentioned, we assumed 0.2% of the reagents are emitted to air "from the purge vent, the distillation vent and fugitive emissions" as in [1]. Also, *Carbon dioxide, fossil* will be emitted to air as a result of the removal of reagents from the wastewater (see below).

2.1.6. Emissions to water

As in [1], we assumed the remaining fraction of unreacted reagent (4.8% for a generic solvent) to leave the production process with the wastewater. The latter is treated in a dedicated WWTP with a removal efficiency of 90%. This is the efficiency of all WWTP described in the Ecoinvent processes mentioned in Table 1, and is within the ranges reported for the removal of organosulfur compounds [2]. The carbon contained in the removed reagent is emitted to air as *Carbon dioxide, fossil* and calculated according to the following equation:

$$C_w H_x O_y S_z + \left(\frac{2w + x - y}{2}\right) O_2 \rightarrow wCO_2 + \frac{x}{2}H_2O + zS$$

The remaining reagent is emitted to water. Its carbon content is used to calculate the *COD*, *Chemical Oxygen Demand; BOD*, *Biological Oxygen Demand; TOC*, *Total Organic Carbon;* and *DOC*, *Dissolved Organic Carbon* according to the assumptions presented in Table 3.

¹ For a given product, a market activity in Ecoinvent includes an average of the different sources from where the product comes from i.e. different production processes or geographical locations as well as an average transport. (http://www.ecoinvent.org/support/faqs/methodology-of-ecoinvent-3/what-is-a-market-and-how-is-it-created.html)

Table 3 Carbon content of the remaining reagent in water

COD (kg)	$= 0.96 \cdot \frac{\left(\frac{2w + x - y}{2}\right) \cdot M_{O_2}}{M_{reagent}} \cdot m_{remaining \ reagent}(kg)$
BOD(kg)	=COD
TOC (kg)	$= \frac{w \cdot M_C}{M_{reagent}} \cdot m_{remaining \ reagent}(kg)$
DOC (kg)	=TOC

Note that the four parameters measure the same magnitude, the content of carbon in water, and including all of them will most likely overestimate the Eutrophication impact of the process.

Since Ecoinvent 3.0, it is possible to conduct mass, carbon, and water balances [3]. For the latter, and in consistence with other Ecoinvent processes, the 0.024 m³ of cooling water entering the process are assumed to leave it, 0.0147 m3 as *Water, to water, unspecified* and the remaining 0.0093m³ as *Water, to air, unspecified*.

2.1.7. Life Cycle Inventory

The LCI of the production process of a generic solvent is presented in Table 4

	Inputs	
Infrastructure	Industrial plant (u)	4.88E-10
N	Reagent 1 (kg)	Variable
Kaw materials and auxinaries	Water (m ³)	2.00E+00
En ange	Heat (MJ)	3.30E-01
Energy	Electricity (kWh)	2.40E-02
Transport	Truck 32 ton (km)	1.00E+02
Transport	Train (km) <i>Outputs</i>	5.00E+02
Products	Product (kg)	0.00E+00
Parissian to da	Water (kg)	9.30E+00
	Reagent 1 (kg)	2.00E-03
	Reagent 2 (kg)	2.00E-03
	CO ₂ from WWT (g)	Variable
	Reagent 1 (kg)	10% of input to WWTP
	Reagent 2 (kg)	10% of input to WWTP
	COD (g)	Variable
Emissions to water	BOD (g)	Variable
	TOC (g)	Variable
	DOC (g)	Variable
	Water (m ³)	1.47E-02

Table 4 LCI of the production process of 1 kg of a generic solvent

3. Production of GBL

3.1. Reppe process

The Life Cycle Inventory for the production of GBL through the dehydrogenation of 1,4-butanediol (Reppe process) is already included in the Ecoinvent database [1]. All flows in the LCI follows the procedure described in 2.1.

3.2. Maleic anhydride pathway

The hydrogenation of maleic anhydride can be described according to the following reaction:

$$\begin{array}{ccc} C_4H_2O_3 & + 3H_2 \rightarrow C_4H_6O_2 + H_2O \\ \text{Maleic Anhydride} & \text{GBL} \end{array}$$

GBL can be further hydrogenated to THF:

$$\begin{array}{c} C_4H_6O_2+2H_2 \rightarrow C_4H_8O+H_2O\\ \mathrm{THF} \end{array}$$

According to US patent 2,772,291 [4], the maximum GBL molar yield is 60% together with 9% THF (Table 5). The non-reacting fraction of maleic anhydride is split between emissions to air and to water as explained in section 2.1. As a gas, we assume all non-reacting hydrogen is emitted to air.

Table 5 Efficiency of the hydrogenation of maleic anhydride for the production of GBL and additional process information.

Process efficiency			
Conversion	69	9%	
	GBL	THF	
Selectivity	87%	13%	
Molar yield	60%	9%	
Yield (kg/kg maleic anhydride)	0.527	0.066	
Additional process information			
Maleic anhydride (emissions to a	ir)	0.2%	
Maleic anhydride (to WWTP)		30.8%	
Hydrogen (emissions to air)		31.0%	

3.2.1. Infrastructure

See 2.1.1

3.2.2. Raw materials and auxiliaries

The two reagents required for the process are *market for hydrogen, liquid [RER]* and *market for maleic anhydride.* Two different routes for the production of maleic anhydride are available in Ecoinvent: *maleic anhydride production by catalytic oxidation of benzene [RER]*(representing 20% of the market), and *by direct oxidation of n-butane [RER]*(representing the remaining 80% of the market). If the maleic anhydride has to be synthesized in situ, or if one exclusive supplier is desired, the LCI should be changed accordingly, because they present very different environmental profiles.

3.2.3. Energy

See 2.1.3

21

3.2.4. Transportation

Since both reagents are available as market activities, no transport is required.

3.2.5. Emissions to air

See 2.1.5

3.2.6. Emissions to water

As for 2.1.6 and 3.2., 30.8% of maleic anhydride ends up in the WWTP, where it is removed with an efficiency of 90% according to the following reaction.

$$C_4H_2O_3 + 3O_2 \rightarrow 4CO_2 + H_2O_3$$

3.2.7. Life Cycle Inventory

The LCI for the production of 1 kg GBL is presented in Table 6

Table 6 Life cycle inventory of the hydrogenation of maleic anhydride for 1 Kg production of GBL

Inputs			
Infrastructure	Industrial plant (u)	4.50E-10	
	Maleic anhydride (kg)	1.38E+00	
Raw materials and auxiliaries	Hydrogen (kg)	9.17E-02	
	Water (m ³)	2.70E-02	
Francis	Heat (MJ)	2.25E+00	
Energy	Electricity (kWh)	3.71E-01	
04	itputs		
Products	GBL (kg)	1.00E+00	
	Water (kg)	1.05E+01	
Production of the star	Maleic anhydride (kg)	2.76E-03	
Emissions to air	Hydrogen (kg)	4.59E-03	
	CO ₂ from WWT (kg)	1.07E-01	
	Maleic anhydride (kg)	6.62E-03	
	COD (kg)	6.22E-03	
Emissions to water	BOD (kg)	6.22E-03	
Emissions to water	TOC (kg)	3.24E-03	
	DOC (kg)	3.24E-03	
	Water (m ³)	1.65E-02	

4. Production of THF

4.1. Reppe process

The Life Cycle Inventory for the production of THF from acetylene and formaldehyde (Reppe process) is already included in the Ecoinvent database [1]. Energy is process specific, but the rest of flows follows what we described in 2.1.

4.2. Maleic anhydride pathway

As seen in 3.2, the hydrogenation of maleic anhydride can lead to the formation of THF according to the following reaction:

$$C_4H_2O_3 + 5H_2 \rightarrow C_4H_8O + 2H_2O$$

A theoretical plant for the production of 5000 metric tons THF per year is described in [6], which we use to generate the LCI. The plant is expected to produce 5000 metric tons/year of THF operating 333 days/year. It requires 8000 metric tons of maleic anhydride and 9700 Nm³/year pure hydrogen. The non-reacting fraction of maleic anhydride is split between emissions to air and to water. As a gas, we assume all non-reacting hydrogen is emitted to air (Table 7).

 Table 7 Efficiency of the hydrogenation of maleic anhydride for the production of THF and additional process information.

Process efficiency		
Conversion	85%	
	THF	
Selectivity	100%	
Molar yield	85%	
Yield (kg/kg maleic anhydride)	0.627	
Additional process information		
Maleic anhydride (emissions to air)	0.2%	
Maleic anhydride (to WWTP)	14.6%	
Hydrogen (emissions to air)	14.8%	

4.2.1. Infrastructure

We assumed the same lifespan for the plant in [6] as the one in 2.1. (50 years) but kept the 5000 tons per year described in the original reference.

4.2.2. Raw materials and auxiliaries

The same reagents as for the production of GBL via maleic anhydride (3.2.2) were used.

4.2.3. Energy

Kataneka et al. estimated $1.25 \cdot 10^3$ kcal/h of Fuel gas and 336 kWh/h electricity would be required. The same processes as in 2.1.3 were used.

4.2.4. Transportation

Since both reagents are available as market activities, no transport is required.

4.2.5. Emissions to air

See 2.1.5

4.2.6. Emissions to water

As per 2.1.6 and 4.2, 14.6% of maleic anhydride ends up in the WWTP, where it is removed with an efficiency of 90% according to the following reaction.

$$C_4 H_2 O_3 + 3O_2 \rightarrow 4CO_2 + H_2 O_3$$

4.2.7. Life Cycle Inventory

The LCI of the hydrogenation of maleic anhydride for the production of 1kg of THF in Table 8 for the original process, and in Table 9 for the optimized process.

Table 8 Life cycle inventory	v of the hvdroaenatio	n of maleic anhvdride	for the production	of 1ka of THF
rable o Lije cycle inventory	, of the hydrogenatio	n oj malele annyanae	joi the production	oj 1 kg oj 11 li

Inputs			
Infrastructure	Industrial plant (u)	4.00E-09	
	Maleic anhydride (kg)	1.60E+00	
Raw materials and auxiliaries	Hydrogen (kg)	3.46E-02	
	Water (m ³)	5.03E-05	
Enougy	Heat (MJ)	8.36E-03	
Energy	Electricity (kWh)	5.85E-01	
Ou	tputs		
Products	THF (kg)	1.00E+00	
	Water (kg)	9.30E+00	
	Maleic anhydride (kg)	3.19E-03	
Emissions to air	Hydrogen (kg)	6.89E-03	
	CO ₂ from WWT (kg)	3.76E-01	
	Maleic anhydride (kg)	2.32E-02	
	COD (kg)	2.19E-02	
Facility in the sector.	BOD (kg)	2.19E-02	
Emissions to water	TOC (kg)	1.14E-02	
	DOC (kg)	1.14E-02	
	Water (m ³)	1.47E-02	

Table 9 Life cycle inventory of the hydrogenation of maleic anhydride for the production of 1kg of THF (optimized)

Inputs			
Infrastructure	Industrial plant (u)	4.00E-09	
	Maleic anhydride (kg)	1.43E+00	
Raw materials and auxiliaries	Hydrogen (kg)	2.92E-02	
	Water (m ³)	5.03E-05	
Energy	Heat (MJ)	8.36E-03	
	Electricity (kWh)	5.85E-01	
Outputs			
Products	THF (kg)	1.00E+00	
Emissions to air	Water (kg)	9.30E+00	
	Maleic anhydride (kg)	2.86E-03	
	Hydrogen (kg)	1.46E-03	

	CO ₂ from WWT (kg)	1.11E-01
Emissions to water	Maleic anhydride (kg)	6.87E-03
	COD (kg)	6.46E-03
	BOD (kg)	6.46E-03
	TOC (kg)	3.37E-03
	DOC (kg)	3.37E-03
	Water (m ³)	1.47E-02

4.3. Mitsubishi Acetoxylation

The production of THF through the Mitsubishi Acetoxylation consists of three stages (Figure 2).

Figure 2 Production process of THF through Mitsubishi Acetoxylation

The reaction of 1,3-Butadiene with acetic acid in oxidizing conditions results in the production of 1,4-Diacetoxy-2-butene following the reaction below. At 70°C and 70 bars, the reaction has a selectivity of 90% according to [6].

$$C_4H_6 + 2C_2H_4O_2 + \frac{1}{2}O_2 \rightarrow C_8H_{12}O_4 + H_2O_4$$

The subsequent hydrogenation process has a 98% selectivity for 1,4-Diacetoxybutane at 60°C and 50 bars in the presence of a Pb/C catalyst: complete the reaction

$$C_8 H_{12} O_4 + H_2 \to C_8 H_{14} O_4$$

The final hydrolysis with acidic exchange resin has a 90% selectivity for THF. The resulting acetic acid is recycled back to the first stage.

$$C_8H_{14}O_4 + 2H_2O \rightarrow C_4H_8O + 2C_2H_4O_2 + 2C_4H_{10}O_2$$

Because the reviewed literature did not include conversion rates for any of the aforementioned reactions, we assumed it to be 95% as in 2.1.

No byproducts were specified except for the hydrolysis stage, where 1,4-Butanediol is produced to which we allocated the 10% remaining selectivity. As in 2.1 Inventories are scaled for the final production of 1kg of solvents.

Process efficiency				
	Stage 1	Stage 2	S	tage 3
Reagent	1,3 butadiene	1,4-Diacetoxy-2-butene	1,4-Diac	etoxybutane
Conversion	95%	95%		95%
Product	1,4-Diacetoxy-2-butene	1,4-Diacetoxybutane	THF	Butanediol
Selectivity	90%	98%	90%	10%
Molar yield	85.5%	93.1%	85.5%	9.5%
Yield (kg/kg)	2.722	0.942	0.354	0.098
Additional process information				
Emission to air	0.2%	0.2%		0.2%
To WWTP	4.8%	4.8%		4.8%

Table 10 Efficiency of the different stages of the Mitsubishi acetoxylation and additional process information.

4.3.1. Infrastructure

As in 2.1.1, since intermediates are not considered part of the plant's final production.

4.3.2. Raw materials and auxiliaries

The two reagents required for the first step are *marketed for butadiene [GLO]* and *marketed for acetic acid, without water in 98% solution [GLO].* No consumption of oxygen (or air) was allocated to the process, in agreement with other oxidation processes described in Ecoinvent (e.g. acetaldehyde oxidation, butane oxidation, dimethyl sulfoxide, propylene ammoxidation)[1].For the second step, the reagent required is *marketed for hydrogen, liquid [RER],* and for the third stage, *marketed for water, deionized, from tap water, at user [GLO],*in consistency with other hydrolysis processes (e.g. Benzyl alcohol)[1].

4.3.3. Energy

No information was found concerning the energy requirements for the Mitsubishi acetoxylation. As a result, we allocate the same energy requirements as in 2.1.3 to each of the three stages.

4.3.4. Transportation

Since all reagents are available as market activities, no transport is required.

4.3.5. Emissions to air

See 2.1.5

4.3.6. Emissions to water

As per 2.1.6 and 4.3, 4.8% of all organic reagents end up in the WWTP, where they are removed with an efficiency of 90% according to the following reactions.

1,3 – Butadiene: $C_4H_6 + \frac{11}{2}O_2 \rightarrow 4CO_2 + 3H_2O$ Acetic Acid: $C_4H_4O_2 + 2O_2 \rightarrow 2CO_2 + 2H_2O$

1,4 – Diacetoxy – 2 – butene:
$$C_8H_{12}O_4 + 9O_2 \rightarrow 8CO_2 + 6H_2O_1$$
,4 – Diacetoxybutane: $C_8H_{14}O_4 + \frac{19}{2}O_2 \rightarrow 8CO_2 + 7H_2O_2$

4.3.7. Life Cycle Inventory

The LCI for the production of 1 kg of THF is presented in Table 11.

Table 11Life cycle inventory of the Mitsubishi acetoxylation for the production of 1kg of solvents

	Inputs	
Infrastructure	Industrial plant (u)	5.11E-10
	1,3 butadiene (kg)	1.10E+00
	Acetic acid (kg)	4.36E-01
Deve meteriale and availiation	Hydrogen (kg)	3.70E-02
Raw materials and auxiliaries	Air (m3)	1.30E+00
	Cooling water (m ³)	1.70E-01
	Process water (kg)	3.28E-01
	Heat (MJ)	1.42E+01
Energy	Electricity (kWh)	2.35E+00
	Outputs	
Products	THF	1.00E+00
	Water (kg)	6.61E+01
	1,3 butadiene (kg)	2.20E-03
	Acetic acid (kg)	4.18E-03
Emissions to air	Hydrogen (kg)	1.74E-03
	1,4-Diacetoxy-2-butene (kg)	6.00E-03
	1,4-Diacetoxybutane (kg)	5.65E-03
	CO ₂ from WWT (kg)	8.00E-01
	1,3 butadiene (kg)	5.29E-03
	Acetic acid (kg)	1.00E-02
	1 A-Diacetovy-2-butene (kg)	1.44E-02
	1,4 Diacetoxy 2 butche (kg)	5.65E-03
Emissions to water	COD (kg)	7.58E-02
	BOD (kg)	7.58E-02
	TOC (kg)	2.42E-02
	DOC (kg)	2.42E-02
	Water (m ³)	1.20E-01

5. Production of DME

5.1. Cleavage of ethylene oxide in presence of dimethyl ether The Life Cycle Inventory for the production of DME from ethylene oxide and dimethyl ether is already included in the Ecoinvent database [1]. Everything is as described in 2.1.

5.2. DOW process

The DOW process for the production of glyme glycol diethers consists of two stages[7]:

- 1) The reaction of ethylene oxide with an alcohol for the production of a glycol monoether.
- 2) A Williamson synthesis: the reaction of the glycol monoether with sodium to produce a sodium alkoxide, which further reacts with an alkyl halide to produce the glyme.

None of these stages are included in Ecoinvent for the production of ethylene glycol monomethyl ether (EGME) and the further synthesis of DME. Nevertheless, both stages are present for the production of ethylene glycol monoethyl ether (EGEE) and ethylene glycol diethyl ether. Thus, we selected *ethylene glycol diethyl ether production [RER]* as a proxy for the production of DME through the DOW process.

5.3. Shell Omega process

This processes starts with the production of EC from ethylene oxide and carbon dioxide[8], a process included in Ecoinvent.

The subsequent opening of the EC ring with methanol at 150-200°C and 80 bars catalyzed with Zirconium (IV) acetylacetonate results in ethylene glycol. Jagtap *et al* reported a conversion of 96% for EC, we assumed the same for MeOH for a 75% molar yield of ethylene glycol.

$$C_3H_4O_3+CH_3OH\to C_2H_6O_2$$

The final stage is the further addition/coupling of methanol at 160-220°C using a polyperfluorosulfonic acid resin as catalyst. According to [9], 76% of the Ethylene glycol reacts and we assumed the same fraction for MeOH for a final molar yield of 21.3% in DME and 50% in EGME, another solvent.

$$C_2 H_6 O_2 + 2 C H_3 O H \rightarrow C_4 H_{10} O_2 + H_2 O$$

Table 12 Efficiency of the different stages of the Shell Omega process and additional process information.

Process efficiency			
	Stage 2	Stag	ge 3
Reagent	EC	Ethylen	e glycol
Conversion	96.0%	76	%
Product	Ethylene glycol	DME	EGME
Selectivity	78%	28.1%	66.1%
Molar yield	75%	21.3%	50.0%
Yield (kg/kg)	0.53	0.31	0.61
Additional process information			
Emission to air	0.2%	0.2	2%
To WWTP	3.8%	24.	1%

5.3.1. Infrastructure

As in 2.1.1

5.3.2. Raw materials and auxiliaries

Since the production of ethylene carbonate is considered part of the Shell Omega process, we used *ethylene carbonate production [RoW]* as source for EC. Methanol on the other hand, is not considered to be manufactured in situ, thus we selected *market for methanol, from synthetic gas* as its source.

5.3.3. Energy

No information was available on the energy consumption of the different stages. Thus, we proceeded as in 2.1.3

5.3.4. Transportation

Since ethylene carbonate is produced in situ and methanol is available as a as market activity, no transport is required.

5.3.5. Emissions to air

See 2.1.5

5.3.6. Emissions to water

As per 2.1.6 and 5.3., 3.8% of the EC and of methanol from the second stage and 24.1% of ethylene glycol and of methanol end up in the WWTP, where they are removed with an efficiency of 90% according to the following reactions.

Ethylene carbonate:
$$(CH_2O)_2CO + \frac{5}{2}O_2 \rightarrow 3CO_2 + 2H_2O$$

Methanol: $CH_3OH + \frac{3}{2}O_2 \rightarrow CO_2 + 2H_2O$

5.3.7. Life Cycle Inventory

The LCI of the production process of 1 kg of solvents is presented in Table 13 for the original process and in Table 14 for the optimized process.

Inputs		
Infrastructure	Industrial plant (u)	1.19E-09
	Ethylene carbonate (kg)	5.64E+00
Raw materials and auxiliaries	Methanol (kg)	3.46E+00
	Water (m ³)	1.43E-01
Fnorgy	Heat (MJ)	1.19E+01
Lifetgy	Electricity (kWh)	1.97E+00
0	utputs	
Products	DME (kg)	1.00E+00
	Water (kg)	5.55E+01
	Ethylene carbonate (kg)	1.13E-02
Emissions to air	Methanol (kg)	6.93E-03
	Ethylene glycol (kg)	6.47E-03
	CO ₂ from WWT (kg)	1.51E+00
	Ethylene carbonate (kg)	2.14E-02
	Methanol (kg)	4.18E-02
	Ethylene glycol (kg)	7.80E-02
Emissions to water	COD (kg)	1.83E-01
Emissions to water	BOD (kg)	1.83E-01
	TOC (kg)	5.47E-02
	DOC (kg)	5.47E-02
	Water (m ³)	8.77E-02

Table 13 Life Cycle inventory of the Shell Omega process for the production of 1kg of DME

Inputs					
Infrastructure	Industrial plant (u)	1.19E-09			
	Ethylene carbonate (kg)	5.64E+00			
Raw materials and auxiliaries	Methanol (kg)	3.18E+00			
	Water (m ³)	1.43E-01			
Energy	Heat (MJ)	1.19E+01			
	Electricity (kWh)	1.97E+00			
0	utputs				
Products	DME (kg)	1.00E+00			
	Water (kg)	5.55E+01			
	Ethylene carbonate (kg)	1.13E-02			
Emissions to air	Methanol (kg)	6.36E-03			
	Ethylene glycol (kg)	5.15E-03			
	CO ₂ from WWT (kg)	3.21E-01			
	Ethylene carbonate (kg)	2.14E-02			
	Methanol (kg)	1.32E-02			
	Ethylene glycol (kg)	1.24E-02			
Emissions to water	COD (kg)	5.52E-02			
Emissions to water	BOD (kg)	5.52E-02			
	TOC (kg)	1.85E-02			
	DOC (kg)	1.85E-02			
	Water (m ³)	8.77E-02			

Table 14 Life Cycle inventory of the Shell Omega process for the production of 1kg of DME (optimized)

5.4. Hydration/coupling pathway

The coupling of ethylene glycol and methanol has already been described as *stage 3* in section 5.3[9]. However, the ethylene glycol can be produced through an alternative pathway, hydrating ethylene oxide. This is the process included in Ecoinvent for the production of ethylene glycol.

5.4.1. Infrastructure

As in 2.1.1

5.4.2. Raw materials and auxiliaries

As in 5.3.2, *market for methanol, from synthetic gas* was used as a source for methanol. For Ethylene glycol, we selected *market for ethylene glycol [GLO]*.

5.4.3. Energy

No information was available on the energy consumption at the different stages. Thus, we proceeded as in 2.1.3

5.4.4. Transportation

Since all reagents are available as market activities, no transport is required.

5.4.5. Emissions to air

See 2.1.5

5.4.6. Emissions to water

As in 5.3.6 24.1% of ethylene glycol and methanol end up in the wastewater treatment plant, where they are removed with an efficiency of 90% according to the following reactions:

Ethylene glycol:
$$C_2H_6O_2 + \frac{5}{2}O_2 \rightarrow 2CO_2 + 3H_2O$$

Methanol: $CH_3OH + \frac{3}{2}O_2 \rightarrow CO_2 + 2H_2O$

5.4.7. Life Cycle Inventory

The LCI for the production process of 1 kg of DME through the hydration/coupling pathway presented in Table 15 for the original process and in Table 16 for the optimized.

Inputs						
Infrastructure	Industrial plant (u)	1.19E-09				
	Ethylene glycol (kg)	3.23E+00				
Raw materials and auxiliaries	Methanol (kg)	1.41E+00				
	Water (m ³)	7.16E-02				
Energy	Heat (MJ)	5.96E+00				
	Electricity (kWh)	9.84E-01				
Out	puts					
Products	DME (kg)	1.00E+00				
	Water (kg)	2.77E+01				
Emissions to air	Ethylene glycol (kg)	6.47E-03				
	Methanol (kg)	2.82E-03				
	CO ₂ from WWT (kg)	1.42E+00				
	Ethylene glycol (kg)	7.80E-02				
	Methanol (kg)	3.40E-02				
	COD (kg)	1.52E-01				
Emissions to water	BOD (kg)	1.52E-01				
	TOC (kg)	4.30E-02				
	DOC (kg)	4.30E-02				
	Water (m ³)	4.38E-02				

Table 15 Life Cycle inventory of the hydration/coupling process for the production of 1kg of DME

Inputs						
Infrastructure	Industrial plant (u)	1.19E-09				
	Ethylene glycol (kg)	2.58E+00				
Raw materials and auxiliaries	Methanol (kg)	1.13E+00				
	Water (m ³)	7.16E-02				
Energy	Heat (MJ)	5.96E+00				
	Electricity (kWh)	9.84E-01				
Out	puts					
Products	DME (kg)	1.00E+00				
	Water (kg)	2.77E+01				
Emissions to air	Ethylene glycol (kg)	5.15E-03				
	Methanol (kg)	2.25E-03				
	CO ₂ from WWT (kg)	2.25E-01				
	Ethylene glycol (kg)	1.24E-02				
	Methanol (kg)	5.40E-03				
	COD (kg)	2.41E-02				
Emissions to water	BOD (kg)	2.41E-02				
	TOC (kg)	6.81E-03				
	DOC (kg)	6.81E-03				
	Water (m ³)	4.38E-02				

Table 16 Life cycle inventory of the hydration/coupling process for the production of 1kg of DME (optimized)

6. Production of Sulfolane

6.1. Hydrogenation of sulfolene

The production of sulfolane is a two stage process involving first the production of sulfolene from 1,3-Butadiene and sulfur dioxide at 70°C and 15 bar [10]. According to the same source, 94.95% conversion of butadiene is achieved with almost no impurities. SO_2 is used in excess and the non-reacting fraction is recirculated. Still, we assumed that a minimum of 0.2% if is lost as emission to air.

$$C_4H_6 + SO_2 \rightarrow C_4H_6O_2S$$

Following again [10], 95% of the sulfolene produced, reacts to produce pure sulfolane.

$$C_4H_6SO_2 + H_2 \rightarrow C_4H_8SO_2$$

The characteristics of the process detailed in Table 17 follow the general assumptions described in 2.1

Table 17 Efficiency of the different stages for the production of sulfolane and additional process information.

Dwo oo oo officion ou

Process enciency								
	Stage	1	Sta	ge 2				
Reagent	1,3-Butadiene	SO_2	Sulfolene	H_2				
Conversion	94.95%	99.80%	95.00%	95.00%				
Product	Sulfole	ne	Sulfolane					
Selectivity	100.00%	100.00%	100.00%	100.00%				
Molar yield	94.95%	94.95%	95.00%	95.00%				
Yield (kg/kg)	2.07	1.75	0.97	57.08				
Additional process information								
Emission to air	0.20%	0.20%	0.20%	5.00%				
To WWTP	4.85%	0.00%	4.80%	0.00%				

6.1.1. Infrastructure

As in 2.1.1, since intermediates are not considered part of the plant's final production.

6.1.2. Raw materials and auxiliaries

We selected the Ecoinvent processes *market for butadiene [GLO]* and *market for sulfur dioxide, liquid [RER]* for the two reagents required in the first stage and *market for hydrogen, liquid [RER]*, for the hydrogen required in the second one.

6.1.3. Energy

No information was available on the energy consumption at the different stages. Thus, we proceeded as in 2.1.3

6.1.4. Transportation

Since all reagents are available as market activities, no transport is required.

6.1.5. Emissions to air

See 2.1.5

6.1.6. Emissions to water

As for 2.1.6 and Table 17, 4.85% of the 1,3-butadiene from the first stage and 4.8% of sulfolene from the second stage end up in the WWTP, where they are removed with an efficiency of 90% according to the following reactions.

1,3 – Butadiene:
$$C_4H_6 + \frac{11}{2}O_2 \rightarrow 4CO_2 + 3H_2O$$

Sulfolene: $C_4H_6SO_2 + 5O_2 \rightarrow 4CO_2 + 4H_2O$

6.1.7. Life Cycle Inventory

The LCI of the production of 1 kg of sulfolane is presented in Table 18.

Inputs					
Infrastructure	Industrial plant (u)	4.00E-10			
	1,3-Butadiene (kg)	4.82E-01			
Devenatorials and availianies	SO ₂ (kg)	5.71E-01			
Raw materials and auxiliaries	H ₂ (kg)	1.75E-02			
	Water (m ³)	4.80E-02			
Energy	Heat (MJ)	4.00E+00			
	Electricity (kWh)	6.60E-01			
01	utputs				
Products	Sulfolane (kg)	1.00E+00			
	Water (kg)	1.86E+01			
	1,3-Butadiene (kg)	9.64E-04			
Emissions to air	Sulfolene(kg)	2.07E-03			
	H ₂ (kg)	8.76E-04			
	CO ₂ from WWT (kg)	1.34E-01			
	1,3-Butadiene (kg)	2.34E-03			
	Sulfolene(kg)	4.97E-03			
	COD (kg)	1.42E-02			
Emissions to water	BOD (kg)	1.42E-02			
	TOC (kg)	4.06E-03			
	DOC (kg)	4.06E-03			
	Water (m ³)	2.94E-02			

Table 18 Life cycle inventory of the production of 1kg of sulfolane

7. Production of EMS

7.1. From methanethiol and bromoethane

EMS can be synthesized from methanethiol and bromoethane through the oxidation of the intermediate methyl thioethane.

Neither bromoethane or methanethiol are available in Ecoinvent. The latter can be synthesized via the reaction of methanol and hydrogen sulfide using Alumina- K_2WO_4 as catalyst according to [11] achieving both high conversion and high selectivity (stage 0 in

thioethane	Process efficiency							
produced			Stage 0		Stage 1	Stage 2	by the	
reaction of	Reagent		Methanol		Methanethiol	Methylthioethane	an aqueous	
alkaline	Conversion	92.70%			95.00%	99.00%	solution of	
	Product	CH3SH	(CH3)2s	(CH3)20	Methylthioethane	EMS		
	Selectivity	98.10%	1.00%	0.90%	100%	100%		
	Molar yield	90.94%	0.93%	0.83%	95.00%	99.00%		
	Yield (kg/kg)	1.37	0.01	0.01	1.50	1.41		
		Additional process information						
	Emission to air		0.2%		0.2%	0.2%		
	To WWTP		7.1%		4.8%	0.8%		

methanethiol and bromoethane[12]. We could not find any information regarding the molar yields of the following reaction. Thus, we assumed 95% conversion and 100% selectivity as in 2.1 for both methanol and hydrogen sulfide (stage 1 in

Methyl thioethane is produced by the reaction of an aqueous alkaline solution of methanethiol and bromoethane[12]. We could not find any information regarding the molar yields of the following reaction. Thus, we assumed 95% conversion and 100% selectivity as in 2.1 for both methanol and hydrogen sulfide (stage 1 in

$$CH_3SH + C_2H_5Br \rightarrow C_3H_8S + HBr$$

).

):

			Pro	cess effici	ency		
			Stage 0		Stage 1	Stage 2	
Methyl is oxidized in the methanol	Reagent	<i>Methanol</i> n 92.70%			Methanethiol	Methylthioethane	thioethane
	Conversion				95.00%	99.00%	with H_2O_2
	Product	CH3SH	(CH3) ₂₅	(CH3) ₂₀	Methylthioethane	EMS	presence of
	Selectivity	98.10%	1.00%	0.90%	100%	100%	and a
	Molar yield	90.94%	0.93%	0.83%	95.00%	99.00%	
	Yield (kg/kg)	1.37	0.01	0.01	1.50	1.41	
		I	Additional	process i	nformation		
	Emission to air		0.2%		0.2%	0.2%	
	To WWTP		7.1%		4.8%	0.8%	

 Na_2WO_4 catalyst [13]. A 99% molar yield was reported, for which we assume 99% conversion and 100% selectivity (stage 2 in

).

$$C_3H_8S + H_2O_2 \rightarrow C_3H_8SO_2$$

			Pro	cess enic	ency				
Table 19 the different			Stage 0		Stage 1	Stage 2	Efficiency of		
production of additional	Reagent	Methanol			Methanethiol	Methylthioethane	EMS and		
	Conversion		92.70%		95.00%	99.00%	process		
information.	Product	CH3SH	(CH3)2s	(CH3)20	Methylthioethane	EMS			
	Selectivity	98.10%	1.00%	0.90%	100%	100%			
	Molar yield	90.94%	0.93%	0.83%	95.00%	99.00%			
	Yield (kg/kg)	1.37	0.01 Pro	$\begin{array}{c} 0.01\\ \text{cess effici} \end{array}$	ency 1.50	1.41			
	Additional process information Stage 2								
	Emission to air		0.2% Methanol		0.2% Methanethiol	Methylthioethane			
	Conversion		92.70%		95.00%	99.00%			
	Product	CH ₃ SH	(CH3)2S	(CH3)2O	Methylthioethane	EMS			
	Selectivity	98.10%	1.00%	0.90%	100%	100%			
	Molar yield	90.94%	0.93%	0.83%	95.00%	99.00%			
	Yield (kg/kg)	1.37	0.01	0.01	1.50	1.41			
			Additional	process i	nformation				
	Emission to air		0.2%		0.2%	0.2%			
	To WWTP		7.1%		4.8%	0.8%			

7.1.1. Infrastructure

We assumed methanethiol was produced in the same plant synthesizing EMS. Since intermediates are not considered part of the plant's final production, we used the same infrastructure as in 2.1.1.

7.1.2. Raw materials and auxiliaries

As in previous processes, we selected *market for methanol, from synthetic gas* as the source for methanol. We also selected *market for hydrogen sulfide [GLO]* and *market for hydrogen peroxide, without water, in 50% solution state [GLO]* for hydrogen sulfide and hydrogen peroxide respectively. Bromoethane was not available in Ecoinvent, neither was hydrobromic acid, one of its precursors. Thus, we used *market for ethylene bromide [GLO]* as a proxy.

7.1.3. Energy

Folkins and Millers estimated the costs of utilities for the production of methanethiol to be 0.44 euro/lb[11]. Using the prices for electricity in the industry for 1962 available at http://www.eia.gov/totalenergy/data/annual/showtext.cfm?t=ptb0810, we estimated that 0.88kWh/kg of methanethiol were required, which is virtually identical to the total energy (electricity and heat) assumed for generic processes. For the other two stages, no information was available on their energy consumption, so we proceeded as in 4.3.3.

7.1.4. Transportation

Since all reagents are available as market activities, no transport is required.

7.1.5. Emissions to air

See 2.1.5

7.1.6. Emissions to water

As per 2.1.6 and

, 7.1% of the n	nethanol from	the prod	uction of	fmethan	ethiol, 4.8% met	hanethiol and br	omoethene
from the							first stage
and 0.8%		Process efficiency					
second			Stage 0		Stage 1	Stage 2	stage end
up in the	Reagent		Methanol		Methanethiol	Methylthioethane	WWTP.
where they	Conversion	92.70%		95.00%	99.00%	are	
removed	Product	CH₃SH	(CH3)2S	(CH3)2O	Methylthioethane	EMS	with an
efficiency	Selectivity	98.10%	1.00%	0.90%	100%	100%	of 90%
according	Molar yield	90.94%	0.93%	0.83%	95.00%	99.00%	to the
following	Yield (kg/kg)	1.37	0.01	0.01	1.50	1.41	reactions.
		I	Additional	process i	nformation		
	Emission to air		0.2%		0.2%	0.2%	

Emission to air

$$0.2\%$$
 0.2%
 0.2%

 To WWTP
 7.1%
 4.8%
 0.8%

 Mathemaly CH, OH, $\frac{3}{2}$, $2, CO, \frac{1}{2}$, $2H, O$

 $Methanol: CH_3OH + \frac{3}{2}O_2 \rightarrow CO_2 + 2H_2O$

 $Methanethiol: CH_3SH + 2O_2 \rightarrow CO_2 + 2H_2O + S^0$

 $Methylthioethane: C_3H_8SH + 5O_2 \rightarrow 3CO_2 + 4H_2O + S^0$

Bromoethane:
$$C_2H_5Br + \frac{13}{4}O_2 \rightarrow 2CO_2 + \frac{5}{2}H_2O + Br$$

0.8% of the hydrogen peroxide used in stage 2 is assumed to also end in the WWTP, but not removed.

7.1.7. Life Cycle Inventory

The LCI for the production of 1 kg of EMS is presented in

Table 20.

Inputs					
Infrastructure	Industrial plant (u)	4.00E-10			
	Methanol	3.43E-01			
	H ₂ S(kg)	3.60E-01			
Raw materials and auxiliaries	Bromoethane (kg)	1.07E+00			
	Hydrogen peroxide (kg)	6.35E-01			
	Water (m ³)	5.24E-02			
F	Heat (MJ)	4.37E+00			
Energy	Electricity (kWh)	7.26E-01			
0	utputs				
Products	EMS (kg)	1.00E+00			
	Dimethylsulfide	5.13E-03			
	Water (kg)	2.03E+01			
	Methanol (kg)	6.85E-04			
	H ₂ S (kg)	2.63E-02			
Emissions to air	Methaethiol (kg)	9.46E-04			
	Bromoethane (kg)	2.14E-03			
	Methylthioethane (kg)	1.42E-03			
	Hydrogen peroxide (kg)	6.35E-04			
	CO ₂ from WWT (kg)	8.59E-02			
	Methanol (kg)	2.43E-03			
	Methaethiol (kg)	2.27E-03			
	Bromoethane (kg)	5.14E-03			
	Methylthioethane (kg)	5.69E-04			
Fmissions to water	Hydrogen peroxide (kg)	2.54E-03			
Linissions to water	COD (kg)	1.12E-02			
	BOD (kg)	1.12E-02			
	TOC (kg)	2.60E-03			
	DOC (kg)	2.60E-03			
	Water (m ³)	3.21E-02			

Table 20 Life Cycle inventory of the production of 1kg of EMS

7.2. From ethanethiol and chloromethane

Similar to the previous route, EMS can also be synthesized from ethanethiol and chloromethane, In this case, the intermediate to be oxidized is ethyl thioethane.

Ethanethiol is not available in Ecoinvent, but it can be synthesized via the reaction of ethanol and hydrogen sulfide using Alumina- K_2WO_4 as catalyst in the same way as for methanethiol [11] (stage 0 in Table 21):

$$C_2H_5OH + H_2S \to C_2H_5SH$$

Methyl thioethane is produced by the reaction of an aqueous alkaline solution of ethanethiol and chloromethane[12]. As in 7.1 we assumed 95% conversion and 100% selectivity as in 2.1 for both methanol and hydrogen sulfide (stage 1 in Table 21).

$$C_2H_5SH + CHCl_3 \rightarrow C_3H_8S$$

As before methyl thioethane can also be oxidized with H_2O_2 in the presence of methanol and a Na_2WO_4 catalyst [13]. As for methyl thioethane we assume 99% conversion and 100% selectivity (stage 2 in Table 21).

$$C_3H_8S + H_2O_2 \rightarrow C_3H_8SO_2$$

Table 21 Efficiency of the different stages for the production of EMS and additional process information.

Process efficiency								
		Stage 1	Stage 2					
Reagent	Ethanol Ethanethiol Methylthic							
Conversion		83.4	10%	95.00%	99.00%			
Product	C ₂ H ₅ SH	(C2H5)2S	(C2H5)2O	C_2H_4	Methylthioethane	EMS		
Selectivity	82%	6%	9%	2%	100%	100%		
Molar yield	68.72%	5.00%	7.76%	1.92%	95.00%	99.00%		
Yield (kg/kg)	0.927	0.098	0.098 0.125 0.012		1.165	1.406		
Additional process information								
Emission to air			0.20%	0.20%				
To WWTP		16.4	0%		4.80%	0.80%		

7.2.1. Infrastructure

We assumed ethanethiol was produced in the same plant synthesizing EMS. Since intermediates are not considered part of the plant's final production, we used the same infrastructure as in 2.1.1.

7.2.2. Raw materials and auxiliaries

We selected *market for ethanol, from synthetic gas* as the source for methanol. We also selected *market for hydrogen sulfide [GLO]* and *market for hydrogen peroxide, without water, in 50% solution state [GLO,* and *market for methyl chloride [GLO]* for hydrogen sulfide, hydrogen peroxide, and chloromethane respectively.

7.2.3. Energy

No information was available on their energy consumption, so we proceeded as in 4.3.3.

7.2.4. Transportation

Since all reagents are available as market activities, no transport is required.

7.2.5. Emissions to air

See 2.1.5

7.2.6. Emissions to water

As per 2.1.6 and Table 21, 16.4% of the ethanol from the production of ethanethiol, 4.8% ethanethiol and chloromethane from the first stage and 0.8% of methyl thioethane from the second stage end up in the WWTP, where they are removed with an efficiency of 90% according to the following reactions.

$$\begin{split} Ethanol: C_2H_5OH + 3O_2 &\rightarrow 2CO_2 + 3H_2O\\ Ethanethiol: C_2H_5SH + \frac{7}{2}O_2 &\rightarrow 2CO_2 + 3H_2O + S^0\\ \end{split}$$

$$\begin{split} Methylthioethane: C_3H_8SH + 5O_2 &\rightarrow 3CO_2 + 4H_2O + S^0 \end{split}$$

0.8% of the hydrogen peroxide used in stage 2 is assumed to also end in the WWTP, but not removed.

7.2.7. Life Cycle Inventory

The LCI of the production of 1 kg of EMS is presented in Table 22.

Inputs				
Infrastructure	Industrial plant (u)	9.91E-10		
	Ethanol (kg)	6.57E-01		
	H ₂ S (kg)	1.39E+00		
Raw materials and auxiliaries	Chloromethane (kg)	1.17E+00		
	Hydrogen peroxide (kg)	1.59E-01		
	Water (m ³)	5.94E-02		
Enorgy	Heat (MJ)	4.95E+00		
Energy	Electricity (kWh)	8.17E-01		
	Outputs			
Products	Ethyl methyl sulfone (kg)	1.00E+00		
	Water (kg)	2.30E+01		
	Ethanol (kg)	1.32E-03		
	H ₂ S (kg)	9.07E-01		
Fmissions to air	Ethanethiol (kg)	1.22E-03		
	Chloromethane (kg)	5.87E-02		
	Methylthioethane (kg)	1.42E-03		
	Hydrogen peroxide (kg)	6.35E-04		
	CO ₂ from WWT (kg)	2.32E-01		
	Ethanol (kg)	1.08E-02		
Emissions to water	Ethanethiol (kg)	2.93E-03		
	Methylthioethane(kg)	5.69E-04		

lydrogen peroxide (kg)	2.54E-03
COD (kg)	2.90E-02
SOD (kg)	2.90E-02
OC (kg)	7.04E-03
00C (kg)	7.04E-03
Vater (m ³)	3.64E-02
	lydrogen peroxide (kg) OD (kg) OD (kg) OC (kg) OC (kg) Vater (m ³)

8. Production of DMC

8.1. Shell Omega process and methanol coupling

The production of dimethyl carbonate is not available in Ecoinvent. Nevertheless, Monteiro et al. modeled three processes HYSYS for the production of DMC [14]: From urea and two versions of the Shell Omega process. Of the latter two, the one with the lowest impact was also used by Dunn et al. for their MFA on Li-ion batteries [15]. We have also adapted Monteiro's process to build our Life Cycle Inventory.

As presented in Figure 3, the production of DMC is conducted in two steps starting with the synthesis of ethylene carbonate from ethylene oxide and atmospheric CO_2 , followed by coupling with methanol for the production of DMC and ethylene glycol.

Figure 3 Production of DMC and Ethylene glycol, adapted from [14]:

Monteiro *et al.* achieved 100% conversion for both stages, which we decreased to 99% in consequence with 2.1.

8.1.1. Infrastructure

The plant simulated by Monteiro produced around 66900 and 97400 tons/year of ethylene glycol and DMC respectively. However, the fraction of industrial plant per kg of product is the same as in 2.1.1.

8.1.2. Raw materials and auxiliaries

We selected market for ethylene oxide [GLO] as the source of EO and carbon dioxide, in air [natural resource/in air] as the source of CO_2M onteiro et al considered the processes a temporary sink for CO_2 . As in previous sections, we used market for methanol, from synthetic gas as the source for methanol.

8.1.3. Energy

Monteiro et al. estimated a net energy consumption of TJ/year, of which 93.5% would be heat. As per our calculations, this is equivalent to 1.23 MJ and 0.023 kWh per kg of products.

8.1.4. Transportation

Since all reagents are available as market activities, no transport is required.

8.1.5. Emissions to air

See 2.1.5

8.1.6. Emissions to water

As per 2.1.6, 0.8% of the ethylene oxide, ethylene carbonate and methanol used end up in the WWTP, where they are removed with 90% efficiency according to the following reactions:

Ethylene oxide:
$$C_2H_4O + \frac{5}{2}O_2 \rightarrow 2CO_2 + 2H_2O$$

Ethylene carbonate: $(CH_2O)_2CO + \frac{5}{2}O_2 \rightarrow 3CO_2 + 2H_2O$
Methanol: $CH_3OH + \frac{3}{2}O_2 \rightarrow CO_2 + 2H_2O$

8.1.7. Life Cycle Inventory

The LCI of the production of 1 kg of DMC is presented in Table 23.

Table 23 Life Cycle inventory of the production of 1Kg of Divid	Table 23	Life Cycle	inventory	of the p	roduction	of 1kg	of DMC
---	----------	------------	-----------	----------	-----------	--------	--------

Inputs				
Infrastructure	Industrial plant (u)	9.82E-10		
	Ethylene oxide (kg)	7.18E-01		
Raw materials and auxiliaries	CO ₂ (kg)	7.25E-01		
	Methanol (kg)	1.05E+00		
	Water (m ³)	5.89E-02		
Fnorgy	Heat (MJ)	3.02E+00		
Energy	Electricity (kWh)	5.77E-02		
0	utputs			
Products	DMC	1.00E+00		
	Water (kg)	2.28E+01		
	Ethylene oxide (kg)	1.44E-03		
	Methanol (kg)	2.09E-03		
Emissions to air	CO ₂ (kg)	7.25E-03		
	CO ₂ from WWT (kg)	3.61E-02		
	Ethylene carbonate (kg)	1.16E-03		
	Ethylene oxide (kg)	5.74E-04		
	Ethylene carbonate (kg)	1.14E-03		
	Methanol (kg)	8.36E-04		
Emissions to water	COD (kg)	3.20E-03		
Emissions to water	BOD (kg)	3.20E-03		
	TOC (kg)	1.09E-03		
	DOC (kg)	1.09E-03		
	Water (m ³)	3.61E-02		

9. Production of EA

9.1. Fischer esterification

The production of ethyl acetate from acetic acid and ethanol is included in Ecoinvent. There is specific information for raw materials and energy, but the rest is generic.

9.2. Dehydrogenation of ethanol

Ethyl acetate can be produced by the dehydrogenation of ethanol using a copper/chromite/metallic copper/alumina/barium chromate catalyst [16]:

$$2C_2H_5OH \rightarrow C_4H_8O_2$$

We used the demonstration offered by Santacesaria *et al*[16] to compile the information presented in Table 24. In order to achieve higher conversion rates, a ratio of 0.005mol H₂/mol EtOH is kept.

Table 24 Efficiency of the production of EA through dehydrogenation and additional process information.

Process efficiency					
Reagent		Ethanol			
Conversion		64.83%			
Product	EA	Acetic Aldehyde			
Selectivity	99.58%	0.42%			
Molar yield	64.56%	0.27%			
Yield (kg/kg)	0.62	0.003			
Additional process information					
Emission to air		0.2%			
To WWTP		35.0%			

9.2.1. Infrastructure

As in 2.1.1

9.2.2. Raw materials and auxiliaries

We selected the Ecoinvent processes market for ethanol, without water, in 99.7% solution state, from *ethylene [GL0]* as the source for ethanol

9.2.3. Energy

No information was available on the energy consumption of the different stages. Thus, we proceeded as in 2.1.3.

9.2.4. Transportation

Since the reagent is available as market activity, no transport is required.

9.2.5. Emissions to air

See 2.1.5

9.2.6. Emissions to water

As per 2.1.6 and Table 24, 35% of the ethanol ends up in the WWTP, where they are removed with an efficiency of 90% according to the following reactions.

Ethanol:
$$2C_2H_5OH + 3O_2 \rightarrow 2CO_2 + 3H_2O$$

9.2.7. Life Cycle Inventory

The LCI of the production of 1 kg of EA is presented in Table 25.

Inputs				
Infrastructure	acture Industrial plant (u)			
	H2 (kg)	3.52E-04		
Raw materials and auxiliaries	Ethanol (kg)	1.61E+00		
	Water (m ³)	2.42E-02		
Enorgy	Heat (MJ)	2.01E+00		
Lifergy	Electricity (kWh)	3.35E-01		
Out	puts			
Products	EA	1.00E+00		
	H ₂ (kg)	2.23E-02		
	Water (kg)	9.37E+00		
Fmissions to air	H ₂ (kg)	7.05E-07		
	Ethanol (kg)	3.24E-03		
	CO ₂ from WWT (kg)	9.75E-01		
	Ethanol (kg)	5.66E-02		
	COD (kg)	1.18E-01		
Emissions to water	BOD (kg)	1.18E-01		
Emissions to water	TOC (kg)	2.96E-02		
	DOC (kg)	2.96E-02		
	Water (m ³)	1.48E-02		

Table 25 Life Cycle inventory of the production of 1kg of EA

9.3. Avada process

The Avada process allows the synthesis of ethylene acetate from the reaction of ethene and acetic acid using a solid acid catalyst [17]:

$$CH_3COOH + CH_2CH_2$$

According to [17], butadiene is generated as byproduct. The conditions with minimized production and highest selectivity for EA are presented in Table 26, used to model the Avada process.

 Table 26 Efficiency of the different stages for the production of EM through dehydrogenation and additional process information.

Process efficiency						
Reagent	Ethe	ene	Acetic acid			
Conversion	42	%	42%			
Product	EA	Butene	EA	Butene		
Selectivity	99.85%	0.15%	99.9%	0.1%		
Molar yield	42.00%	0.10%	42.00%	0.10%		
Yield (kg/kg)	1.319	0.002	0.616	0.001		
Additional process information						
Emission to air 0.2% 0.2%				%		

9.3.1. Infrastructure

As in 2.1.1

9.3.2. Raw materials and auxiliaries

We selected the Ecoinvent processes *market for ethylene, average [GLO]* and *market for acetic acid [RER]* for the two reagents required.

9.3.3. Energy

No information was available on the energy consumption at the different stages. Thus, we proceeded as in 2.1.3.

9.3.4. Transportation

Since all reagents are available as market activities, no transport is required.

9.3.5. Emissions to air

See 2.1.5

9.3.6. Emissions to water

As per 2.1.6 and Table 26, 57.7 % of the ethane and acetic acid end up in the WWTP, where they are removed with an efficiency of 90% according to the following reactions.

Ethene:
$$C_2H_4 + 3O_2 \rightarrow 2CO_2 + 2H_2O$$

Acetic Acid: $C_4H_4O_2 + 2O_2 \rightarrow 2CO_2 + 2H_2O$

9.3.7. Life Cycle Inventory

The LCI for the production of 1 kg of EA is presented in Table 27 for the original process and in Table 28 for the optimized process.

Inputs				
Infrastructure	Industrial plant (u)	4.01E-10		
Raw materials	Ethylene (kg)	7.58E-01		
and	Acetic acid (kg)	1.59E+00		
auxiliaries	Water (m ³)	2.40E-02		
Enongy	Heat (MJ)	2.00E+00		
Energy	Electricity (kWh)	3.30E-01		
Outputs				
Products	EA (kg)	1.00E+00		
Emissions to	Water (kg)	9.31E+00		
	Ethene (kg)	1.52E-03		
air	Acetic acid (kg)	3.25E-03		
	CO ₂ from WWT (kg)	2.47E+00		
	Ethene (kg)	4.38E-02		
Emissions to water	Acetic acid (kg)	9.37E-02		
	COD (kg)	2.50E-01		

BOD (kg)	2.50E-01
TOC (kg)	7.50E-02
DOC (kg)	7.50E-02
Water (m ³)	1.47E-02

Table 28 Life cycle inventory of the production of 1kg of EA (optimized)

Inputs				
Infrastructure	Industrial plant (u)	4.00E-10		
	Ethylene (kg)	3.36E-01		
Raw materials and auxiliaries	Acetic acid (kg)	7.04E-01		
	Water (m ³)	2.40E-02		
En even	Heat (MJ)	2.00E+00		
Ellergy	Electricity (kWh)	3.30E-01		
Out	puts			
Products	EA (kg)	1.00E+00		
Emissions to air	Water (kg)	9.31E+00		
	Ethene (kg)	6.71E-04		
	Acetic acid (kg)	1.44E-03		
	CO ₂ from WWT (kg)	9.11E-02		
	Ethene (kg)	1.61E-03		
	Acetic acid (kg)	3.45E-03		
	COD (kg)	9.20E-03		
Emissions to water	BOD (kg)	9.20E-03		
	TOC (kg)	2.76E-03		
	DOC (kg)	2.76E-03		
	Water (m ³)	1.47E-02		

9.4. Oxidation of butane

This process is included in Ecoinvent. There is specific information for raw materials and energy, the rest is generic.

References

- [1] J. Sutter, Life Cycle Inventories of Petrochemical Solvents, Swiss Centre for Life Cycle Inventories, Dübendorf, 2007.
- [2] K. Badr, M. Bahmani, A. Jahanmiri, D. Mowla, Biological removal of methanethiol from gas and water streams by using Thiobacillus thioparus: investigation of biodegradability and optimization of sulphur production, Environ. Technol. 35 (2014) 1729–1735. doi:10.1080/09593330.2014.881404.
- [3] E. Moreno Ruiz, B.P. Weidema, C. Bauer, T. Nemecek, C.O. Vadenbo, K. Treyer, G. Wernet, Documentation of changes implemented in ecoinvent Data 3.0, Ecoinvent Centre, St. Gallen, 2013. http://www.ecoinvent.org/files/report_of_changes_ecoinvent_2.2_to_3.0_20130904.pdf (accessed June 16, 2016).
- [4] W.W. Gilbert, J.H.F. Mcshane, Hydrogenation of maleic anhydride, US2772291 A, 1956. http://www.google.de/patents/US2772291 (accessed February 19, 2016).

- [5] J. Kanetaka, T. Asano, S. Masamune, New process for production of tetrahydrofuran, Ind. Eng. Chem. 62 (1970) 24–32.
- K. Weissermel, H.-J. Arpe, 1,3-Diolefins, in: Ind. Org. Chem., Wiley-VCH Verlag GmbH, 1997: pp. 105–124. http://onlinelibrary.wiley.com/doi/10.1002/9783527616688.ch5/summary (accessed June 1, 2016).
- [7] S. Tang, H. Zhao, Glymes as versatile solvents for chemical reactions and processes: from the laboratory to industry, RSC Adv. 4 (2014) 11251. doi:10.1039/c3ra47191h.
- [8] H. Yue, Y. Zhao, X. Ma, J. Gong, Ethylene glycol: properties, synthesis, and applications, Chem. Soc. Rev. 41 (2012) 4218. doi:10.1039/c2cs15359a.
- [9] C. Baimbridge, P. Bolomey, J. Love, Method of producing glycol ethers, US20040044253 A1, 2004. http://www.google.de/patents/US20040044253 (accessed June 2, 2016).
- [10] E.E. Young, Procede de preparation de sulfone et de ses homologes, BE616856A1, 1962.
- [11] H.O. Folkins, E.L. Miller, Synthesis of Mercaptans, Ind. Eng. Chem. Process Des. Dev. 1 (1962) 271–276. doi:10.1021/i260004a007.
- [12] D.T. McAllan, T.V. Cullum, R.A. Dean, F.A. Fidler, The Preparation and Properties of Sulfur Compounds Related to Petroleum. I. The Dialkyl Sulfides and Disulfides 1, J. Am. Chem. Soc. 73 (1951) 3627–3632. doi:10.1021/ja01152a021.
- [13] C. Yang, Q. Jin, H. Zhang, J. Liao, J. Zhu, B. Yu, J. Deng, Tetra-(tetraalkylammonium)octamolybdate catalysts for selective oxidation of sulfides to sulfoxides with hydrogen peroxide, Green Chem. 11 (2009) 1401–1405. doi:10.1039/B912521N.
- [14] J.G.M.-S. Monteiro, O. de Q.F. Araújo, J.L. de Medeiros, Sustainability metrics for ecotechnologies assessment, Part II. Life cycle analysis, Clean Technol. Environ. Policy. 11 (2009) 459–472. doi:10.1007/s10098-009-0205-8.
- [15] J.B. Dunn, L. Gaines, M. Barnes, M. Wang, J. Sullivan, Material and energy flows in the materials production, assembly, and end-of-life stages of the automotive lithium-ion battery life cycle, Argonne National Laboratory (ANL), 2012.

http://www.osti.gov/bridge/servlets/purl/1044525/ (accessed July 24, 2013).

- [16] E. Santacesaria, S.M. Di, R. Tesser, G. Carotenuto, Process for the production of ethyl-acetate from ethanol, W02011104738 A2, 2011. http://www.google.com/patents/W02011104738A2 (accessed June 14, 2016).
- [17] M. Misono, Recent progress in the practical applications of heteropolyacid and perovskite catalysts: Catalytic technology for the sustainable society, Catal. Today. 144 (2009) 285–291. doi:10.1016/j.cattod.2008.10.054.

10. Data quality and sensitivity analysis

Data quality indicators for the different processes modeled are presented in Table 29. It is based on Table 0.1. found in [1], for which a summary is presented in Table 30. We used a slightly different meaning for items with a quality of "2", partially based on literature, as opposed to based on a proxy process. However, the two most common quality values remain the same: "1" based on literature, and "3" estimated.

			Input materials	Water	Energy	Emissions
<u>.</u>	DMC	Shell Omega	1	1	1	3
Ca	EC	from EO	NA	NA	NA	NA
		Fischer Esterification	1	1	1	3
	54	Dehydrogenation	1	3	3	3
ers	EA	Avada	1	3	3	3
Est		Ox. of butane	1	1	1	3
	CDI	Reppe	3	3	3	3
	GBL	Hydro MAN	1	3	3	3
DME		EO Cleavage	3	3	3	3
	DME	DOW	3	3	3	3
	DIVIE	Shell Omega	1	3	3	3
		Hydration	1	3	3	3
ш		Reppe	3	1	1	3
	THF	Hydro. MAN	1	3	1	3
		Mitsubishi	2	3	3	3
es	SL	Hydro. Sulfolene	1	3	3	3
lfon	ENAS	MeSH+EtBr	2	3	2	3
Su	EIVIS	EtSH+CH ₃ Cl	3	3	3	3
		Average	1.71	2.53	2.35	3.00

Table	29 Data	aualitv	indicators	of the	solvents	under	assessment
				-,			

Processes in italics are available in Ecoinvent. Based on : 1, literature; 2, literature (some stages) and estimations; 3 estimations

	Input material	Water	Energy	Emissions	Solvents
Average	2.03	2.09	1.51	2.71	35.00

Based on: 1, literature; 2, proxy process; 3, estimated

Both we and Ecoinvent relied heavily on estimations such as the ones described in 2.1.5 and 2.1.6. for the emissions to water and air. To some extent, this is also the case for water use. The latter does not have an effect on the results presented in the paper, nor would affect other analysis based on the most common LCIA methods. It would however have tremendous importance if a Water Footprint is conducted. For this kind of studies, we do not suggest using the inventories here included.

While on average we were able to gather more data from literature than Ecoinvent in terms of material consumption, the opposite is true when it comes to energy use. To partially overcome this limitation, we conducted a sensitivity analysis based on the energy demand of the 22 solvent

production processes described in [1] (Table 31) whose energy use is based on literature. We used the maximum and minimum demands of thermal and electrical energy as potential extremes for the energy demand of our processes.

Solvent	Steam (MJ)	Fuel (MJ)	Light fuel oil (kg)*	Thermal (MJ)	Electricity (kWh)
1	4.09			4.09	0.08
2	26.30			26.30	0.12
3	0.26	0.93		1.18	0.02
4	24.75			24.75	0.18
5	4.62			4.62	0.03
6	0.39			0.39	0.63
7	5.58			5.58	0.03
8	3.64			3.64	0.09
9	0.20			0.20	0.06
10	19.25			19.25	0.13
11	0.08			0.08	0.00
12	8.84			8.84	0.01
13	1.00			1.00	0.03
14	5.50			5.50	0.48
15	15.13			15.13	0.36
16	0.04			0.04	0.00
17			0.69	29.52	0.11
18	20.30		0.02	21.02	0.18
19	4.35			4.35	0.73
20	10.20		0.12	15.48	0.28
21	0.22			0.22	0.21
22	2.34			2.34	0.04
			Average	8.80	0.17
			Max	29.52	0.73
			Min	0.037	0.0002

Table 31 Energy demand of the 22 solvents in [1] with process specific data

* 1 kg= 42.6 MJ as described in [2]

References

- [1] J. Sutter, Life Cycle Inventories of Petrochemical Solvents, Swiss Centre for Life Cycle Inventories, Dübendorf, 2007.
- [2] R. Frischknecht, N. Jungbluth, H.-J. Althaus, G. Doka, R. Dones, T. Heck, S. Hellweg, R. Hischier, T. Nemecek, G. Rebitzer, M. Spielmann, G. Wernet, Overview and Methodology, Swiss Centre for Life Cycle Inventories, Dübendorf, 2007.

11. Additional LCIA results

ALOP: agricultural land occupation, GWP: global warming, FETP: freshwater ecotoxicity, FEP: freshwater eutrophication, METP: marine ecotoxicity, NLTP: natural land transformation, TAP: terrestrial acidification potential, TETP: terrestrial ecotoxicity, ULOP: urban land occupation (O) Optimized process

Figure 4 Damages to ecosystems for the production of 1 kg of solvent

GWP: global warming, HTP: human toxicity, IRP: ionising radiation, ODP: ozone depletion, PMFP: particle matter formation, POFP: photochemical oxidant formation (O) Optimized process

Figure 5 Damages to human health for the production of 1 kg of solvent

FDP: fossil fuel depletion, and MDP: mineral resource depletion (O) Optimized process

Figure 6 Damages to resource availability for the production of 1 kg of solvent

Figure 7 Sources of global warming potential for the production of 1 kg of solvent

Figure 8 Sources of fossil fuel depletion potential for the production of 1 kg of solvent

Figure 9 Sources of human toxicity potential for the production of 1 kg of solvent

Figure 10 Sources of particulate matter formation potential for the production of 1 kg of solvents

Impact category	Reference unit	Shell Omega	from EO	Fischer Esterification	Dehydrogenation	Avada	Avada (O)
agricultural land occupation	m2*a	9.36E-02	7.75E-02	1.48E-01	9.78E-02	1.76E-01	9.92E-02
climate change	kg CO2-Eq	2.45E+00	1.49E+00	2.69E+00	3.23E+00	6.35E+00	1.97E+0
fossil depletion	kg oil-Eq	1.97E+00	8.35E-01	1.62E+00	1.78E+00	2.99E+00	1.37E+0
freshwater ecotoxicity	kg 1,4-DCB-Eq	4.52E-02	2.42E-02	3.76E-02	2.40E-02	6.31E-02	3.26E-02
freshwater eutrophication	kg P-Eq	7.67E-04	4.92E-04	1.04E-03	1.02E-03	1.32E-03	7.13E-04
human toxicity	kg 1,4-DCB-Eq	1.04E+00	5.67E-01	9.67E-01	5.69E-01	1.43E+00	7.81E-0:
ionising radiation	kg U235-Eq	1.81E-01	1.46E-01	2.17E-01	1.18E-01	4.98E-01	2.67E-0:
marine ecotoxicity	kg 1,4-DCB-Eq	3.77E-02	2.25E-02	3.32E-02	2.24E-02	5.14E-02	2.87E-02
marine eutrophication	kg N-Eq	1.88E-03	1.10E-03	2.23E-03	1.73E-03	3.28E-03	1.59E-03
metal depletion	kg Fe-Eq	2.03E-01	1.11E-01	1.50E-01	1.16E-01	2.19E-01	1.27E-0:
natural land transformation	m2	4.68E-04	1.05E-04	6.39E-04	1.41E-04	1.23E-03	5.74E-04
ozone depletion	kg CFC-11-Eq	2.48E-07	6.47E-08	3.18E-07	8.73E-08	6.30E-07	2.99E-07
particulate matter formation	kg PM10-Eq	4.64E-03	2.25E-03	5.41E-03	2.95E-03	7.99E-03	3.82E-03
photochemical oxidant formation	kg NMVOC	8.73E-03	4.22E-03	1.16E-02	1.28E-02	1.81E-02	8.39E-03
terrestrial acidification	kg SO2-Eq	1.18E-02	4.76E-03	1.32E-02	7.70E-03	1.83E-02	8.81E-03
terrestrial ecotoxicity	kg 1,4-DCB-Eq	1.86E-04	1.57E-04	3.92E-04	8.76E-05	7.89E-04	3.58E-04
urban land occupation	m2*a	1.72E-02	8.85E-03	2.03E-02	1.28E-02	2.73E-02	1.39E-02
water depletion	m3	6.24E-03	3.13E-03	7.07E-03	4.69E-03	1.14E-02	5.85E-0:

Table 33 Midpoint impact categories for ethers and sulfones

~ ~

			Ethers								
					DME					THF	
Impact category	Reference unit	EO Cleavage	DOW	Shell Omega	Shell Omega (O)	Hydration	Hydration (O)	Reppe	Hydro. MAN	Hydro. MAN (O)	Ν
agricultural land occupation	m2*a	9.25E-02	1.73E-01	6.42E-01	6.40E-01	4.04E-01	3.45E-01	4.90E-01	3.38E-01	3.22E-01	
climate change	kg CO2-Eq	2.14E+00	3.28E+00	1.34E+01	1.20E+01	8.76E+00	6.26E+00	6.28E+00	5.45E+00	4.74E+00	4
fossil depletion	kg oil-Eq	1.53E+00	1.71E+00	7.88E+00	7.66E+00	5.00E+00	4.05E+00	2.37E+00	2.56E+00	2.31E+00	:
freshwater ecotoxicity	kg 1,4-DCB-Eq	3.61E-02	5.36E-02	2.17E-01	2.14E-01	1.32E-01	1.13E-01	9.18E-02	1.21E-01	1.18E-01	
freshwater eutrophication	kg P-Eq	7.34E-04	1.40E-03	4.37E-03	4.33E-03	2.89E-03	2.45E-03	2.57E-03	2.19E-03	2.08E-03	
human toxicity	kg 1,4-DCB-Eq	8.56E-01	1.37E+00	5.11E+00	5.04E+00	3.14E+00	2.67E+00	2.61E+00	2.77E+00	2.67E+00	
ionising radiation	kg U235-Eq	2.28E-01	3.80E-01	1.39E+00	1.39E+00	9.89E-01	8.40E-01	6.04E-01	8.76E-01	8.04E-01	
marine ecotoxicity	kg 1,4-DCB-Eq	3.03E-02	4.99E-02	1.87E-01	1.86E-01	1.17E-01	1.00E-01	8.20E-02	1.12E-01	1.09E-01	
marine eutrophication	kg N-Eq	1.66E-03	2.75E-03	9.08E-03	8.94E-03	5.76E-03	4.75E-03	5.54E-03	3.28E-03	3.04E-03	
metal depletion	kg Fe-Eq	1.43E-01	2.18E-01	9.11E-01	9.02E-01	5.33E-01	4.58E-01	2.92E-01	6.18E-01	6.05E-01	
natural land transformation	m2	3.82E-04	2.89E-04	1.90E-03	1.81E-03	9.34E-04	7.76E-04	9.53E-04	1.89E-03	1.71E-03	
ozone depletion	kg CFC-11-Eq	2.13E-07	6.07E-07	1.11E-06	1.06E-06	5.65E-07	4.74E-07	5.33E-07	1.02E-06	9.20E-07	
particulate matter formation	kg PM10-Eq	3.97E-03	6.14E-03	2.02E-02	1.98E-02	1.28E-02	1.06E-02	1.56E-02	7.40E-03	6.91E-03	

.

. ...

~ ~ ~ ~ ~ ~

.

0

		Reference unit	Shell Omega	from EO	Fischer Esterification	Dehydrogenation	Avada	Avada (O)
	Agricultural land occupation	points	3.67E-03	3.06E-03	5.53E-03	3.74E-03	6.94E-03	3.95
	Climate Change	points	4.28E-02	2.60E-02	4.72E-02	5.66E-02	1.11E-01	3.45
	Freshwater ecotoxicity	points	4.43E-05	1.99E-05	3.77E-05	1.96E-05	6.75E-05	3.17
su	Freshwater eutrophication	points	7.72E-05	4.96E-05	1.05E-04	1.03E-04	1.33E-04	7.17
Mar So Nati	Marine ecotoxicity	points	7.32E-06	4.14E-06	6.93E-06	4.12E-06	1.08E-05	<mark>5.83</mark>
	Natural land transformation	points	1.59E-03	3.70E-04	2.37E-03	4.76E-04	4.56E-03	2.10
ш	Terrestrial acidification	points	1.52E-04	6.10E-05	1.69E-04	9.87E-05	2.35E-04	1.13
	Terrestrial ecotoxicity	points	6.17E-05	5.19E-05	1.28E-04	2.83E-05	2.61E-04	1.19
	Urban land occupation	points	7.87E-04	4.06E-04	9.32E-04	5.86E-04	1.25E-03	6.35
	Subtotal	points	4.92E-02	3.01E-02	5.64E-02	6.17E-02	1.25E-01	4.15
	Climate change	points	6.78E-02	4.12E-02	7.46E-02	8.96E-02	1.76E-01	5.46
ڊ.	Human toxicity	points	1.43E-02	7.80E-03	1.32E-02	7.78E-03	1.96E-02	1.07
lealt	Ionising radiation	points	5.87E-05	4.75E-05	7.07E-05	3.85E-05	1.62E-04	8.69
an H	ozone depletion	points	1.23E-05	2.86E-06	1.61E-05	4.16E-06	3.19E-05	1.50
Ium	Particulate matter formation	points	2.44E-02	1.20E-02	2.90E-02	1.61E-02	4.22E-02	2.01
Ŧ	Photochemical oxidant formation	points	1.14E-03	8.23E-04	2.79E-03	2.13E-03	2.49E-03	1.14
	Subtotal	points	1.08E-01	6.18E-02	1.20E-01	1.16E-01	2.41E-01	8.67
ces	Fossil depletion	points	2.37E-01	1.00E-01	1.95E-01	2.14E-01	3.58E-01	1.65
sour	Metal depletion	points	9.41E-03	5.14E-03	6.95E-03	5.40E-03	1.01E-02	5.89
Re	Subtotal	points	2.46E-01	1.05E-01	2.02E-01	2.19E-01	3.68E-01	1.70
	Total	points	4.03E-01	1.97E-01	3.78E-01	3.96E-01	7.33E-01	2.99

		Reference unit	EO Cleavage	DOW	Shell Omega	Shell Omega (O)	Hydration	Hydration (O)	Reppe	Hydro. MAN	Hydro. MAN (O)	Mitsu
	Agricultural land occupation	points	3.75E-03	6.90E-03	2.58E-02	2.58E-02	1.65E-02	1.41E-02	1.83E-02	1.34E-02	1.28E-02	9.44
	Climate Change	points	3.75E-02	5.74E-02	2.34E-01	2.10E-01	1.54E-01	1.10E-01	1.10E-01	9.56E-02	8.31E-02	7.94
	Freshwater ecotoxicity	points	3.73E-05	4.76E-05	2.09E-04	2.04E-04	1.25E-04	1.05E-04	1.04E-04	9.48E-05	9.07E-05	5.06
su	Freshwater eutrophication	points	7.39E-05	1.41E-04	4.40E-04	4.36E-04	2.91E-04	2.47E-04	2.58E-04	2.20E-04	2.09E-04	1.45
ster	Marine ecotoxicity	points	6.26E-06	9.84E-06	3.71E-05	3.67E-05	2.33E-05	1.98E-05	1.93E-05	1.98E-05	1.90E-05	9.93
sosy	Natural land transformation	points	1.29E-03	1.04E-03	6.33E-03	6.04E-03	3.18E-03	2.63E-03	3.34E-03	7.19E-03	6.51E-03	1.86
й	Terrestrial acidification	points	1.27E-04	1.56E-04	6.58E-04	6.38E-04	3.93E-04	3.24E-04	4.23E-04	2.25E-04	2.09E-04	1.79
	Terrestrial ecotoxicity	points	5.33E-05	1.18E-04	4.45E-04	4.35E-04	1.47E-04	1.22E-04	1.63E-04	1.07E-04	1.01E-04	1.62
	Urban land occupation	points	6.88E-04	1.16E-03	3.61E-03	3.55E-03	2.18E-03	1.83E-03	2.26E-03	2.21E-03	2.09E-03	7.56
	Subtotal	points	4.35E-02	6.70E-02	2.72E-01	2.48E-01	1.76E-01	1.29E-01	1.35E-01	1.19E-01	1.05E-01	9.20
	Climate change	points	5.93E-02	9.09E-02	3.70E-01	3.33E-01	2.43E-01	1.74E-01	1.74E-01	1.51E-01	1.31E-01	1.26
Ę	Human toxicity	points	1.18E-02	1.88E-02	7.04E-02	6.94E-02	4.33E-02	3.68E-02	3.55E-02	3.82E-02	3.68E-02	1.75
lealt	Ionising radiation	points	7.41E-05	1.24E-04	4.54E-04	4.51E-04	3.22E-04	2.73E-04	1.97E-04	2.85E-04	2.62E-04	2.20
an H	ozone depletion	points	1.04E-05	3.63E-05	5.36E-05	5.13E-05	2.65E-05	2.22E-05	2.64E-05	5.14E-05	4.64E-05	1.88
m	Particulate matter formation	points	2.08E-02	3.24E-02	1.06E-01	1.04E-01	6.76E-02	5.56E-02	8.24E-02	3.90E-02	3.63E-02	2.84
Ŧ	Photochemical oxidant formation	points	8.72E-04	1.78E-03	5.10E-03	5.09E-03	3.65E-03	2.95E-03	5.09E-03	1.97E-03	1.80E-03	2.26
	Subtotal	points	9.28E-02	1.44E-01	5.53E-01	5.12E-01	3.58E-01	2.69E-01	2.97E-01	2.31E-01	2.07E-01	1.74
ces	Fossil depletion	points	1.83E-01	2.06E-01	9.45E-01	9.19E-01	5.99E-01	4.85E-01	2.85E-01	3.07E-01	2.77E-01	3.33
sour	Metal depletion	points	6.62E-03	1.01E-02	4.23E-02	4.18E-02	2.47E-02	2.12E-02	1.35E-02	2.86E-02	2.80E-02	6.58
Res	Subtotal	points	1.90E-01	2.16E-01	9.87E-01	9.61E-01	6.24E-01	5.07E-01	2.98E-01	3.35E-01	3.05E-01	3.40
	Total	points	3.26E-01	4.27E-01	1.81E+00	1.72E+00	1.16E+00	9.05E-01	7.30E-01	6.85E-01	6.17E-01	6.06

			Reagents	Electricity	Heat	Chemical plant	Direct emissions
Carbonates	DMC	Shell Omega	2.12E+00	2.76E-02	9.90E-02	1.53E-01	4.35E-02
carbonates	EC	from EO	1.41E+00	1.49E-03	4.90E-03	6.24E-02	5.35E-03
		Fischer Esterification	1.85E+00	5.98E-02	7.12E-01	6.25E-02	8.08E-03
		Dehydrogenation	1.94E+00	1.60E-01	6.59E-02	6.27E-02	1.00E+00
	EA	Avada	3.59E+00	1.59E-01	6.54E-02	6.28E-02	2.47E+00
Ectors		Avada (O)	1.59E+00	1.58E-01	6.56E-02	6.26E-02	9.11E-02
Esters		Ox. of butene	2.99E-01	1.03E-01	3.45E-01	6.35E-02	9.59E-03
	GBL	Reppe	5.27E+00	2.67E-01	7.05E-02	6.20E-02	2.16E-02
		Hydro MAN	5.13E+00	1.78E-01	7.40E-02	7.01E-02	7.52E+00
		Hydro MAN (O)	3.73E+00	1.78E-01	7.36E-02	7.03E-02	1.07E-01
	DME	EO Cleavage	1.76E+00	1.57E-01	6.56E-02	6.24E-02	9.23E-02
		DOW	2.88E+00	1.57E-01	6.55E-02	6.23E-02	1.10E-01
		Shell Omega	1.03E+01	9.47E-01	3.90E-01	1.86E-01	1.51E+00
		Shell Omega (O)	1.02E+01	9.46E-01	3.90E-01	1.86E-01	3.21E-01
Ethors		Hydration	6.49E+00	4.73E-01	1.95E-01	1.86E-01	1.42E+00
Luiers		Hydration (O)	5.18E+00	4.73E-01	1.95E-01	1.85E-01	2.25E-01
		Reppe	6.09E+00	5.27E-02	5.27E-02	6.21E-02	1.88E-02
	тыс	Hydro. MAN	4.17E+00	2.81E-01	5.45E-04	6.24E-01	3.76E-01
		Hydro. MAN (O)	3.73E+00	2.81E-01	4.74E-04	6.24E-01	1.11E-01
		Mitsubishi	2.06E+00	4.53E-04	1.13E+00	4.66E-01	8.00E-01
	SL	Hydro. Sulfolene	6.97E-01	3.17E-01	1.31E-01	3.63E-02	2.80E-01
Sulfoner		MeSH+BrEt	5.79E+00	4.39E-01	1.82E-01	1.73E-01	1.11E+00
Sunones	EMS	EtSH+CH3Cl	5.14E+00	4.35E-01	1.80E-01	1.71E-01	9.50E-01
		EtSH+CH3Cl (O)	5.69E+00	2.81E-01	1.15E-01	5.03E-02	6.95E-02

Table 36 Global warming potential (kg CO2 Eq./kg solvent)

			Reagents	Electricity	Heat	Chemical plant	Direct emissions
Carbonates	DMC	Shell Omega	1.89E+00	7.90E-03	4.18E-02	3.85E-02	0.00E+00
carbonates	EC	from EO	8.17E-01	4.18E-04	2.01E-03	1.57E-02	0.00E+00
		Fischer Esterification	1.40E+00	1.57E-02	1.91E-01	1.57E-02	0.00E+00
		Dehydrogenation	1.69E+00	4.56E-02	2.78E-02	1.59E-02	-1.78E-04
	EA	Avada	2.90E+00	4.51E-02	2.78E-02	1.58E-02	-2.99E-04
Ectors		Avada (O)	1.28E+00	4.50E-02	2.77E-02	1.58E-02	-1.37E-04
Latera		Ox. of butene	7.62E-01	2.93E-02	1.13E-01	1.60E-02	-9.20E-05
	GBL	Reppe	2.01E+00	7.02E-02	2.85E-02	1.55E-02	0.00E+00
		Hydro MAN	2.91E+00	5.08E-02	3.12E-02	1.77E-02	-3.00E-04
		Hydro MAN (O)	2.11E+00	5.06E-02	3.12E-02	1.77E-02	0.00E+00
	DME	EO Cleavage	1.44E+00	4.47E-02	2.77E-02	1.58E-02	-1.53E-04
		DOW	1.63E+00	4.46E-02	2.76E-02	1.58E-02	0.00E+00
		Shell Omega	7.40E+00	2.69E-01	1.65E-01	4.65E-02	0.00E+00
		Shell Omega (O)	7.18E+00	2.69E-01	1.65E-01	4.67E-02	-7.66E-04
Ethors		Hydration	4.73E+00	1.34E-01	8.24E-02	4.65E-02	0.00E+00
Luiers		Hydration (O)	3.78E+00	1.34E-01	8.26E-02	4.65E-02	0.00E+00
		Reppe	2.33E+00	1.50E-02	1.38E-02	1.57E-02	2.37E-04
	тыс	Hydro. MAN	2.32E+00	7.98E-02	0.00E+00	1.57E-01	0.00E+00
		Hydro. MAN (O)	2.07E+00	7.99E-02	2.31E-04	1.57E-01	0.00E+00
		Mitsubishi	2.24E+00	0.00E+00	3.21E-01	1.96E-01	2.78E-04
	SL	Hydro. Sulfolene	1.03E+00	9.02E-02	5.53E-02	1.56E-02	0.00E+00
Sulfones		MeSH+BrEt	2.53E+00	1.29E-01	7.88E-02	4.48E-02	0.00E+00
Sunones	EMS	EtSH+CH3Cl	2.17E+00	1.26E-01	7.76E-02	4.42E-02	0.00E+00
		EtSH+CH3Cl (O)	2.00E+00	7.59E-02	1.19E-02	4.63E-02	2.13E-04

Table 37 Fossil depletion potential (kg oil Eq./kg solvent)

			Reagents	Electricity	Heat	Chemical plant	Direct emissions
Carbonates	DMC	Shell Omega	3.96E-03	3.94E-05	4.92E-05	5.90E-04	0.00E+00
carbonates	EC	from EO	2.00E-03	4.96E-06	3.38E-06	2.40E-04	0.00E+00
		Fischer Esterification	3.81E-03	1.95E-04	1.17E-03	2.40E-04	0.00E+00
		Dehydrogenation	2.44E-03	2.29E-04	3.27E-05	2.42E-04	0.00E+00
	EA	Avada	7.49E-03	2.26E-04	3.28E-05	2.41E-04	7.99E-07
Ectors		Avada (O)	3.32E-03	2.26E-04	3.24E-05	2.41E-04	0.00E+00
Esters		Ox. of butene	7.72E-04	1.47E-04	4.38E-04	2.45E-04	-1.60E-07
	GBL	Reppe	1.31E-02	8.71E-04	4.86E-05	2.38E-04	0.00E+00
		Hydro MAN	5.63E-03	2.54E-04	3.65E-05	2.70E-04	0.00E+00
		Hydro MAN (O)	4.09E-03	2.54E-04	3.67E-05	2.71E-04	-4.65E-07
	DME	EO Cleavage	3.47E-03	2.24E-04	3.25E-05	2.40E-04	0.00E+00
		DOW	5.64E-03	2.24E-04	3.25E-05	2.40E-04	0.00E+00
		Shell Omega	1.80E-02	1.35E-03	1.94E-04	7.14E-04	0.00E+00
		Shell Omega (O)	1.75E-02	1.35E-03	1.94E-04	7.15E-04	0.00E+00
Ethors		Hydration	1.13E-02	6.75E-04	9.75E-05	7.15E-04	0.00E+00
Luiers		Hydration (O)	9.07E-03	6.75E-04	9.71E-05	7.15E-04	-1.06E-06
		Reppe	1.52E-02	7.64E-05	9.66E-05	2.40E-04	0.00E+00
	тыс	Hydro. MAN	4.60E-03	4.01E-04	0.00E+00	2.40E-03	7.40E-07
		Hydro. MAN (O)	4.11E-03	4.02E-04	0.00E+00	2.40E-03	0.00E+00
		Mitsubishi	3.17E-03	1.60E-06	1.61E-03	2.32E-04	-5.32E-07
	SL	Hydro. Sulfolene	6.50E-03	4.52E-04	6.53E-05	2.40E-04	0.00E+00
Sulfoner		MeSH+BrEt	1.25E-02	5.37E-04	7.67E-05	5.70E-04	1.37E-06
Sulfolles	EMS	EtSH+CH3Cl	1.30E-02	6.13E-04	8.87E-05	6.50E-04	-1.43E-06
		EtSH+CH3Cl (O)	1.23E-02	4.77E-04	6.81E-05	2.29E-04	-1.31E-06

Table 38 Particle matter formation potential (kg PM10 Eq./kg solvent)

			Reagents	Electricity	Heat	Chemical plant	Direct emissions
Carbonates	DMC	Shell Omega	5.95E-01	1.70E-02	4.97E-03	4.03E-01	1.62E-02
carbonates	EC	from EO	3.99E-01	6.24E-04	2.83E-04	1.64E-01	2.55E-03
		Fischer Esterification	6.23E-01	2.38E-02	1.56E-01	1.64E-01	0.00E+00
		Dehydrogenation	3.02E-01	9.86E-02	3.30E-03	1.65E-01	5.69E-05
	EA	Avada	1.16E+00	9.75E-02	3.29E-03	1.64E-01	1.43E-04
Ectors		Avada (O)	5.15E-01	9.74E-02	3.28E-03	1.65E-01	0.00E+00
Esters		Ox. of butene	5.94E-02	6.33E-02	8.25E-02	1.67E-01	3.72E-05
	GBL	Reppe	2.07E+00	1.06E-01	4.45E-03	1.63E-01	-2.34E-04
		Hydro MAN	1.17E+00	1.10E-01	3.67E-03	1.85E-01	0.00E+00
		Hydro MAN (O)	8.50E-01	1.10E-01	3.67E-03	1.85E-01	0.00E+00
	DME	EO Cleavage	5.87E-01	9.65E-02	3.25E-03	1.64E-01	5.31E-03
		DOW	1.11E+00	9.65E-02	3.29E-03	1.64E-01	1.37E-04
		Shell Omega	4.02E+00	5.81E-01	1.94E-02	4.88E-01	2.04E-03
		Shell Omega (O)	3.95E+00	5.81E-01	4.88E-01	1.97E-02	1.51E-03
Ethors		Hydration	2.36E+00	2.91E-01	9.75E-03	4.88E-01	9.43E-04
Luiers		Hydration (O)	1.88E+00	2.90E-01	9.88E-03	4.88E-01	8.01E-04
		Reppe	2.39E+00	3.26E-02	2.01E-02	1.64E-01	0.00E+00
	тыс	Hydro. MAN	9.55E-01	1.73E-01	0.00E+00	1.64E+00	0.00E+00
		Hydro. MAN (O)	8.53E-01	1.73E-01	0.00E+00	1.64E+00	0.00E+00
		Mitsubishi	3.39E-01	2.56E-04	6.94E-01	2.34E-02	1.11E-02
	SL	Hydro. Sulfolene	1.79E-01	1.95E-01	6.59E-03	1.64E-01	4.89E-03
Sulfoner		MeSH+BrEt	1.47E+00	3.42E-01	1.14E-02	5.76E-01	4.58E-01
Sunones	EMS	EtSH+CH3Cl	8.67E-01	2.82E-01	9.46E-03	4.76E-01	3.78E-01
		EtSH+CH3Cl (O)	1.49E+00	1.29E-01	4.30E-03	9.89E-02	3.44E-04

Table 39 Human toxicity potential (kg 1,4-DCB-Eq/kg solvent)