Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2017

Supporting information

Fabrication of Highly Dispersed/Active Ultrafine Pd Nanoparticles Supported Catalyst: a Facile Solvent-free In-situ Dispersion/Reduction Method

Yu Shen^a, Xiangkun Bo^a, Zhengfang Tian^b, Yongzheng Wang^a, Xiangke Guo^a, Mingjiang Xie^a, Fei Gao^a, Ming Lin^c, Xuefeng Guo^{*ab}, and Weiping Ding^a

Fig. S1 TEM image and XRD pattern of hydroxyapatite nanorods.

Fig. S2 XRD patterns of different samples compared with traditional wet impregnation (WI) sample

Fig. S3 H₂-TPR profiles obtained from: a) HAP, b) 1Pd(acac)₂/HAP-WI and 1Pd(acac)₂/HAP-SSD

Fig. S4 XRD patterns of 1Pd/HAP obtained after reduction in H_2 .

Fig. S5 Nitrogen adsorption-desorption isotherm curves of HAP, °1Pd-HAP-SSD, °1Pd-HAP-SSD and

1Pd-HAP-WI.

Fig. S6 H_2 -TPD profiles of different samples: a) ^a1Pd/HAP-SSD and b) ^b1Pd/HAP-SSD and c) 1Pd/HAP-

WI.

Samples	Specific	Pore	Pore	
	Area	size	volume	
	/ m²/g	/ nm	/ cm ³ /g	
НАР	34	7.3	0.071	
°1Pd/HAP-SSD	34	9.0	0.077	
^b 1Pd/HAP-	31	8.2	0.064	
SSD				
1Pd/HAP-WI	31	7.4	0.057	

Table S1 Textural parameters of different samples