Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Carboxylate-promoted reductive functionalization of CO₂ with amine and hydrosilane under mild conditions

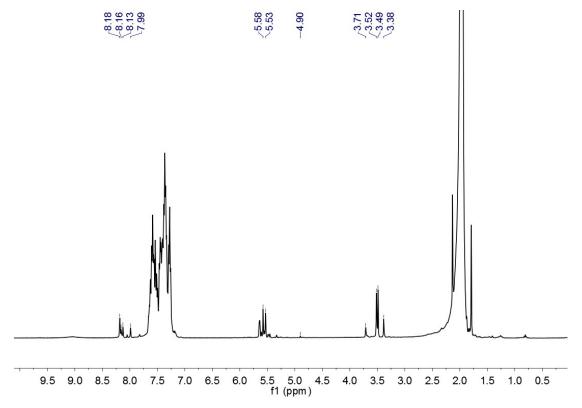
Xiao-Fang Liu^a, Chang Qiao^a, Xiao-Ya Li^a, Liang-Nian He*a,b

^a State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University

^b Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China. E-mail: heln@nankai.edu.cn; Tel.: (+86) 22-23503878; fax: (+86) 22-23503878.

Table of Contents

1. C	1. General Experimental Section								
2. Cesium Formate-Catalyzed Hydrosilation of CO ₂ in the Absence of									
Amines									
3. Experimental procedure for reductive functionalization of CO ₂ with									
aniline to <i>N</i> -methylaniline and <i>N</i> , <i>N</i> -methylaniline									
4.	Charac	terization	Data	for	the	Products	and	Aminal	
IntermediateS5									
5.	NMR	Spectral	Copies	of	the	Products	and	Aminal	
IntermediateS9									


1. General Experimental Section

The starting materials were commercially available and were used without further purification except solvents. The products were isolated by column chromatography on silica gel (200-300 mesh) using petroleum ether (60-90 °C) and ethyl acetate. All compounds were characterized by ¹H NMR, ¹³C NMR and mass spectroscopy, which are consistent with those reported in the literature. NMR spectra were determined on Bruker 400 in CDCl₃ or C₆D₆. ¹H NMR spectra was recorded on 400 MHz spectrometers using CDCl₃ as solvent referenced to tetramethylsilane (TMS, 0 ppm). The ¹³C NMR chemical shifts were reported in ppm relative to the carbon resonance of CDCl₃ (central peak is 77.0 ppm). ¹H NMR peaks are labeled as singlet (s), doublet (d), triplet (t), and multiplet (m). The coupling constants, *J*, are reported in Hertz (Hz). GC-MS data were performed on Finnigan HP G1800 A. GC analyses were performed on a Shimadzu GC-2014 equipped with a capillary column (RTX-17 30 m × 0.25 μm) using a flame ionization detector.

2. Cesium formate-catalyzed hydrosilation of CO₂ in the absence of amines

$$\begin{array}{c} \text{CO}_2 + \text{Ph}_2\text{SiH}_2 & \xrightarrow{\hspace*{1cm} \text{HCOOCs} \\ \hspace*{1cm} \text{CH}_3\text{CN}, \hspace*{1cm} 50 \hspace*{1cm} ^{\circ}\text{C} \end{array} \\ \end{array} \\ + \text{ICOO[Si]} + \text{[Si]OCH}_2\text{O[Si]} + \text{CH}_3\text{O[Si]}$$

Under inert atmosphere (Ar), a 10 mL Schlenk flask was charged with cesium formate (2.3 mg), diphenylsilane (186 μ L, 1 mmol) and CH₃CN (2 mL) successfully. The reaction mixture was stirred at 50 °C under an atmosphere of CO₂ (99.999%, balloon). Samples were taken for the desired time (6 h) to be analyzed through ¹H NMR. It was found that diphenylsilane (4.90 ppm) was consumed in 6 h, giving rise to peaks at ~ 8.1, ~ 5.5 and ~ 3.5 ppm, indicative of CO₂ reduction to silyl formates, silyl acetals and silyl methoxides.¹

(a) S. N. Riduan, Y. Zhang and J. Y. Ying, *Angew. Chem. Int. Ed.*, 2009, 48, 3322-3325.
(b) M.-A. Courtemanche, M.-A. Legare, E. Rochette and F.-G. Fontaine, *Chem. Commun.*, 2015, 51, 6858-6861.

3. Experimental procedure for reductive functionalization of CO_2 with aniline to N-methylaniline and N,N-methylaniline

Under inert atmosphere (Ar), a 50 mL Schlenk flask was charged successively with cesium formate (9.2 mg, 5 mol% relative to amine), aniline (1 mmol), diphenylsilane (744 μ L, 4 mmol) and CH₃CN (8 mL). The reaction mixture was stirred at 50 °C for 6 h under an atmosphere of CO₂ (99.999%, balloon). After the reaction, the reaction mixture was concentrated and purified by silica gel column chromatography (petroleum ether-EtOAc). *N*-methylaniline was obtained with 21% isolated yield, and *N*,*N*-methylaniline were with 28% yield. The spectrum of *N*-methylaniline are as below: ¹H NMR (400 MHz, CDCl₃) δ 7.18 (t, J = 7.8 Hz, 2H), 6.70 (t, J = 7.3 Hz, 1H), 6.60 (d, J = 8.2 Hz, 2H), 3.63 (s, 1H), 2.81 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 149.25, 129.14, 117.18, 112.36, 30.66.

4. Characterization Data for the Products

N,N-Dimethylaniline

Yellow oil. ¹H NMR (400 MHz, CDCl₃, 25°C, TMS) δ 7.24 (dd, J = 8.8, 7.3 Hz, 2H), 6.85 – 6.62 (m, 3H), 2.94 (s, 6H). ¹³C NMR (101 MHz, CDCl₃, 25°C, TMS) δ 150.58, 129.03, 116.60, 112.62, 40.61. GC-MS (EI, 70 eV) m/z (%) 121.15 (81.29), 120.15 (100.00), 77.05 (29.56).

4-Methoxy-N,N-dimethylaniline

White solid. ¹H NMR (400 MHz, CDCl₃, 25°C, TMS) δ 6.88 – 6.81 (m, 2H), 6.79 – 6.72 (m, 2H), 3.76 (s, 3H), 2.86 (s, 6H). ¹³C NMR (101 MHz, CDCl₃, 25°C, TMS) δ 152.12, 145.52, 115.04, 114.60, 55.72, 41.92. GC-MS (EI, 70 eV) m/z (%) 151.25 (59.49), 136.20 (100.00).

N,N-Dimethyl-p-toluidine

Yellow oil. ¹H NMR (400 MHz, CDCl₃, 25°C, TMS) δ 7.05 (d, J = 8.1 Hz, 2H), 6.69 (d, J = 8.2 Hz, 2H), 2.89 (s, 6H), 2.25 (s, 3H). ¹³C NMR (101 MHz, CDCl₃, 25°C, 6

TMS) δ 148.77, 129.54, 126.09, 113.19, 41.05, 20.22. GC-MS (EI, 70 eV) m/z (%) 35.20 (77.14), 134.15 (100.00), 91.10 (22.96).

4-Chloro-N,N-dimethylaniline

Yellow oil. ¹H NMR (400 MHz, CDCl₃, 25°C, TMS) δ 7.17 (d, J = 8.9 Hz, 2H), 6.64 (d, J = 8.7 Hz, 2H), 2.92 (s, 6H). ¹³C NMR (101 MHz, CDCl₃, 25°C, TMS) δ 149.10, 128.75, 121.36, 113.59, 40.64. GC-MS (EI, 70 eV) m/z (%) 157.10 (25.27), 156.10 (39.00), 155.10 (82.99), 154.10 (100.00).

Yellow liquid ¹H NMR (400 MHz, CDCl₃) δ 7.22 (t, J = 7.7 Hz, 2H), 6.84 – 6.52 (m, 3H), 3.39 (q, J = 7.0 Hz, 2H), 2.89 (s, 3H), 1.10 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 149.05, 129.11, 115.97, 112.33, 46.75, 37.38, 11.13.

N-allyl-N-methylaniline

Yellow oil. ¹H NMR (400 MHz, CDCl₃, 25°C, TMS) $\delta 7.25 - 7.20$ (m, 2H), 6.74 – 6.68 (m, 3H), 5.89 – 5.80 (m, 1H), 5.18 – 5.13 (m, 2H), 3.92 (d, J = 4.9 Hz, 2H), 2.93 (s, 3H). ¹³C NMR (101 MHz, CDCl₃, 25°C, TMS) δ 149.43, 133.75, 129.07, 116.36, 116.12, 112.40, 55.23, 37.97. HRMS (ESI, m/z) calcd. For C₁₀H₁₃N [M+H]⁺: 148.1126, found: 148.1122.

N-isopropyl-N-methylaniline

Yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.22 (t, J = 7.9 Hz, 2H), 6.79 (d, J = 8.2 Hz, 2H), 6.69 (t, J = 7.2 Hz, 1H), 4.18 – 3.96 (m, 1H), 2.72 (s, 3H), 1.15 (d, J = 6.6 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 150.10, 129.07, 116.38, 113.28, 48.87, 29.75, 19.26.

1-Methylpiperidine

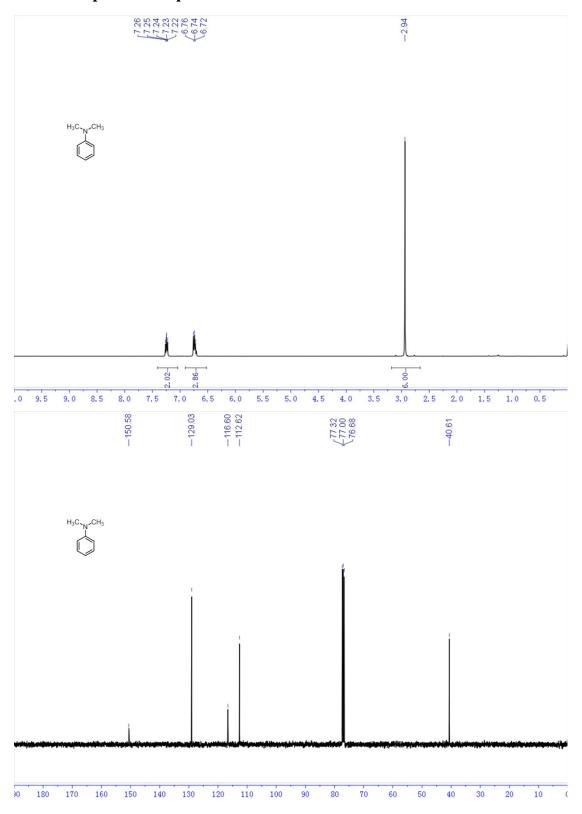
Colourless oil. ¹H NMR (400 MHz, CDCl₃, 25°C, TMS) δ 2.33 (s, 4H), 2.24 (s, 3H), 1.68 – 1.51 (m, 4H), 1.41 (s, 2H). ¹³C NMR (101 MHz, CDCl₃, 25°C, TMS) δ 56.46, 46.86, 25.95, 23.70. GC-MS (EI, 70 eV) m/z (%) 99.15 (42.36), 98.15 (100.00), 71.10 (22.54).

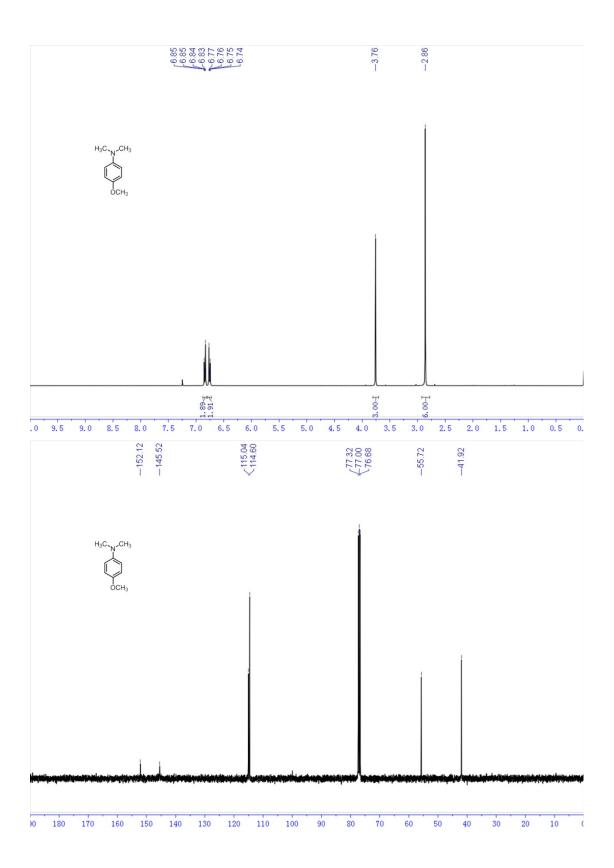
4-methylmorpholine

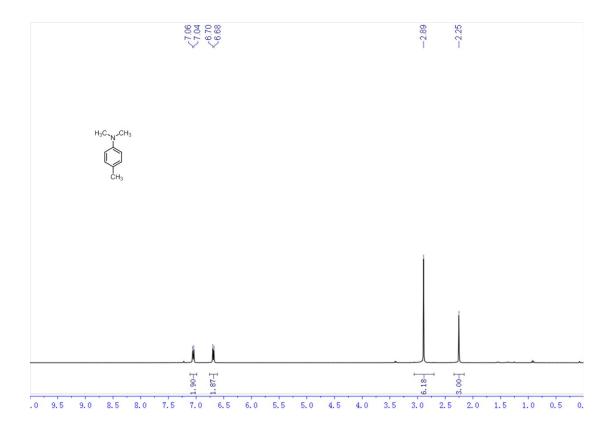
Colourless oil. ¹H NMR (400 MHz, CDCl₃, 25°C, TMS) δ 3.80 – 3.61 (m, 4H), 2.41 (s, 4H), 2.29 (s, 3H). ¹³C NMR (101 MHz, CDCl₃, 25°C, TMS) δ 66.67, 55.20, 46.23. GC-MS (EI, 70 eV) m/z (%) 101.15 (100.00), 100.15 (36.36), 71.10 (60.10).

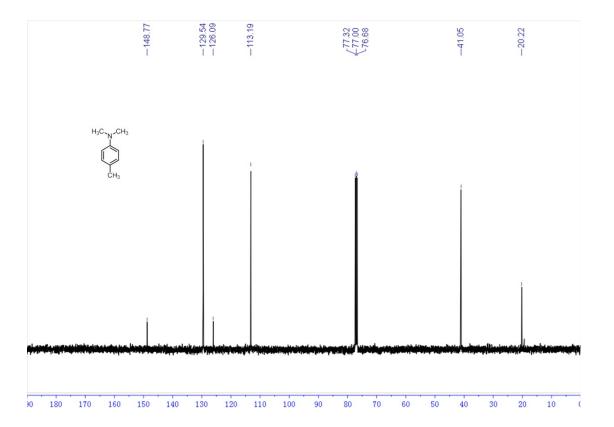
4-Bromo-N,N-dimethylaniline

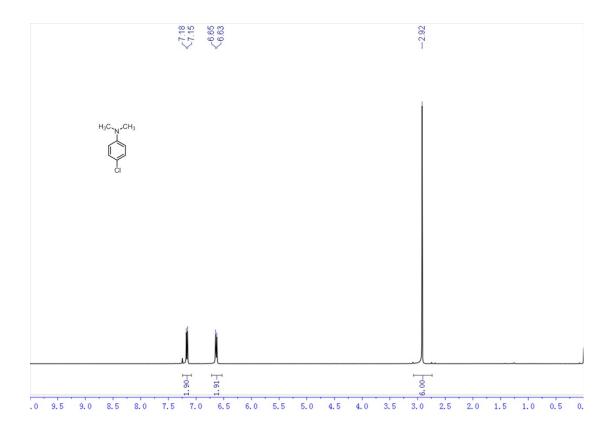
White solid. ¹H NMR (400 MHz, CDCl₃, 25°C, TMS) δ 7.30 (d, J = 9.1 Hz, 2H), 6.59 (d, J = 8.8 Hz, 2H), 2.92 (s, 6H). ¹³C NMR (101 MHz, CDCl₃, 25°C, TMS) δ 56.46, 46.86, 25.95, 23.70. ¹³C NMR (101 MHz, CDCl₃) δ 149.46, 131.64, 114.06, 108.45, 40.53. GC-MS (EI, 70 eV) m/z (%) 201.00 (93.41), 200.00 (100.00), 199.00 (99.32), 198.00 (97.76), 118.15 (45.22), 77.10 (20.98).


N,N-dimethylcyclohexanamine


Colourless oil. ¹H NMR (400 MHz, CDCl₃, 25°C, TMS) δ 2.27 (s, 6H), 2.14 – 2.10 (m, 1H), 1.86 – 1.76 (m, 4H), 1.68 – 1.55 (m, 1H), 1.26 – 1.09 (m, 5H). ¹³C NMR (101 MHz, CDCl₃, 25°C, TMS) δ 63.60, 41.43, 28.82, 26.14, 25.60. GC-MS (EI, 70 eV) 127.20 (26.01), 84.15 (100.00), 71.10 (21.41).


N,N'-dimethyl-N,N'-diphenylmethanediamine


Colourless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.25 (dd, J = 8.6, 7.4 Hz, 4H), 6.84 (d, J = 8.1 Hz, 4H), 6.78 (t, J = 7.3 Hz, 2H), 4.76 (s, 2H), 2.87 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 149.31, 129.27, 117.86, 113.76, 70.44, 36.31. GC-MS (EI, 70 eV) m/z (%) 226.20 (2.83), 121.15 (16.02), 120.15 (100.00), 107.15 (61.88), 106.15 (71.81), 79.10 (21.17), 77.10 (39.67).


4. NMR Spectral Copies of the Products

